MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsspropd Structured version   Unicode version

Theorem lsspropd 17983
Description: If two structures have the same components (properties), they have the same subspace structure. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
lsspropd.b1  |-  ( ph  ->  B  =  ( Base `  K ) )
lsspropd.b2  |-  ( ph  ->  B  =  ( Base `  L ) )
lsspropd.w  |-  ( ph  ->  B  C_  W )
lsspropd.p  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
lsspropd.s1  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  e.  W )
lsspropd.s2  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  =  ( x ( .s `  L
) y ) )
lsspropd.p1  |-  ( ph  ->  P  =  ( Base `  (Scalar `  K )
) )
lsspropd.p2  |-  ( ph  ->  P  =  ( Base `  (Scalar `  L )
) )
Assertion
Ref Expression
lsspropd  |-  ( ph  ->  ( LSubSp `  K )  =  ( LSubSp `  L
) )
Distinct variable groups:    x, y, B    x, K, y    ph, x, y    x, W, y    x, L, y    x, P, y

Proof of Theorem lsspropd
Dummy variables  a 
b  z  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 752 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  C_  B )  /\  (
z  e.  P  /\  ( a  e.  s  /\  b  e.  s ) ) )  ->  ph )
2 simprl 756 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  C_  B )  /\  (
z  e.  P  /\  ( a  e.  s  /\  b  e.  s ) ) )  -> 
z  e.  P )
3 simplr 754 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  C_  B )  /\  (
z  e.  P  /\  ( a  e.  s  /\  b  e.  s ) ) )  -> 
s  C_  B )
4 simprrl 766 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  C_  B )  /\  (
z  e.  P  /\  ( a  e.  s  /\  b  e.  s ) ) )  -> 
a  e.  s )
53, 4sseldd 3443 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  C_  B )  /\  (
z  e.  P  /\  ( a  e.  s  /\  b  e.  s ) ) )  -> 
a  e.  B )
6 lsspropd.s1 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  e.  W )
76ralrimivva 2825 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. x  e.  P  A. y  e.  B  ( x ( .s
`  K ) y )  e.  W )
87ad2antrr 724 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  C_  B )  /\  (
z  e.  P  /\  ( a  e.  s  /\  b  e.  s ) ) )  ->  A. x  e.  P  A. y  e.  B  ( x ( .s
`  K ) y )  e.  W )
9 ovrspc2v 6300 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  P  /\  a  e.  B
)  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  W )  ->  (
z ( .s `  K ) a )  e.  W )
102, 5, 8, 9syl21anc 1229 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  C_  B )  /\  (
z  e.  P  /\  ( a  e.  s  /\  b  e.  s ) ) )  -> 
( z ( .s
`  K ) a )  e.  W )
11 lsspropd.w . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  C_  W )
1211ad2antrr 724 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  C_  B )  /\  (
z  e.  P  /\  ( a  e.  s  /\  b  e.  s ) ) )  ->  B  C_  W )
13 simprrr 767 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  C_  B )  /\  (
z  e.  P  /\  ( a  e.  s  /\  b  e.  s ) ) )  -> 
b  e.  s )
143, 13sseldd 3443 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  C_  B )  /\  (
z  e.  P  /\  ( a  e.  s  /\  b  e.  s ) ) )  -> 
b  e.  B )
1512, 14sseldd 3443 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  C_  B )  /\  (
z  e.  P  /\  ( a  e.  s  /\  b  e.  s ) ) )  -> 
b  e.  W )
16 lsspropd.p . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
1716oveqrspc2v 6301 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
z ( .s `  K ) a )  e.  W  /\  b  e.  W ) )  -> 
( ( z ( .s `  K ) a ) ( +g  `  K ) b )  =  ( ( z ( .s `  K
) a ) ( +g  `  L ) b ) )
181, 10, 15, 17syl12anc 1228 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  C_  B )  /\  (
z  e.  P  /\  ( a  e.  s  /\  b  e.  s ) ) )  -> 
( ( z ( .s `  K ) a ) ( +g  `  K ) b )  =  ( ( z ( .s `  K
) a ) ( +g  `  L ) b ) )
19 lsspropd.s2 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  =  ( x ( .s `  L
) y ) )
2019oveqrspc2v 6301 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( z  e.  P  /\  a  e.  B ) )  -> 
( z ( .s
`  K ) a )  =  ( z ( .s `  L
) a ) )
211, 2, 5, 20syl12anc 1228 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  C_  B )  /\  (
z  e.  P  /\  ( a  e.  s  /\  b  e.  s ) ) )  -> 
( z ( .s
`  K ) a )  =  ( z ( .s `  L
) a ) )
2221oveq1d 6293 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  C_  B )  /\  (
z  e.  P  /\  ( a  e.  s  /\  b  e.  s ) ) )  -> 
( ( z ( .s `  K ) a ) ( +g  `  L ) b )  =  ( ( z ( .s `  L
) a ) ( +g  `  L ) b ) )
2318, 22eqtrd 2443 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  C_  B )  /\  (
z  e.  P  /\  ( a  e.  s  /\  b  e.  s ) ) )  -> 
( ( z ( .s `  K ) a ) ( +g  `  K ) b )  =  ( ( z ( .s `  L
) a ) ( +g  `  L ) b ) )
2423eleq1d 2471 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  C_  B )  /\  (
z  e.  P  /\  ( a  e.  s  /\  b  e.  s ) ) )  -> 
( ( ( z ( .s `  K
) a ) ( +g  `  K ) b )  e.  s  <-> 
( ( z ( .s `  L ) a ) ( +g  `  L ) b )  e.  s ) )
2524anassrs 646 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  C_  B )  /\  z  e.  P )  /\  ( a  e.  s  /\  b  e.  s ) )  ->  (
( ( z ( .s `  K ) a ) ( +g  `  K ) b )  e.  s  <->  ( (
z ( .s `  L ) a ) ( +g  `  L
) b )  e.  s ) )
26252ralbidva 2846 . . . . . . . 8  |-  ( ( ( ph  /\  s  C_  B )  /\  z  e.  P )  ->  ( A. a  e.  s  A. b  e.  s 
( ( z ( .s `  K ) a ) ( +g  `  K ) b )  e.  s  <->  A. a  e.  s  A. b  e.  s  ( (
z ( .s `  L ) a ) ( +g  `  L
) b )  e.  s ) )
2726ralbidva 2840 . . . . . . 7  |-  ( (
ph  /\  s  C_  B )  ->  ( A. z  e.  P  A. a  e.  s  A. b  e.  s 
( ( z ( .s `  K ) a ) ( +g  `  K ) b )  e.  s  <->  A. z  e.  P  A. a  e.  s  A. b  e.  s  ( (
z ( .s `  L ) a ) ( +g  `  L
) b )  e.  s ) )
2827anbi2d 702 . . . . . 6  |-  ( (
ph  /\  s  C_  B )  ->  (
( s  =/=  (/)  /\  A. z  e.  P  A. a  e.  s  A. b  e.  s  (
( z ( .s
`  K ) a ) ( +g  `  K
) b )  e.  s )  <->  ( s  =/=  (/)  /\  A. z  e.  P  A. a  e.  s  A. b  e.  s  ( (
z ( .s `  L ) a ) ( +g  `  L
) b )  e.  s ) ) )
2928pm5.32da 639 . . . . 5  |-  ( ph  ->  ( ( s  C_  B  /\  ( s  =/=  (/)  /\  A. z  e.  P  A. a  e.  s  A. b  e.  s  ( ( z ( .s `  K
) a ) ( +g  `  K ) b )  e.  s ) )  <->  ( s  C_  B  /\  ( s  =/=  (/)  /\  A. z  e.  P  A. a  e.  s  A. b  e.  s  ( (
z ( .s `  L ) a ) ( +g  `  L
) b )  e.  s ) ) ) )
30 3anass 978 . . . . 5  |-  ( ( s  C_  B  /\  s  =/=  (/)  /\  A. z  e.  P  A. a  e.  s  A. b  e.  s  ( (
z ( .s `  K ) a ) ( +g  `  K
) b )  e.  s )  <->  ( s  C_  B  /\  ( s  =/=  (/)  /\  A. z  e.  P  A. a  e.  s  A. b  e.  s  ( (
z ( .s `  K ) a ) ( +g  `  K
) b )  e.  s ) ) )
31 3anass 978 . . . . 5  |-  ( ( s  C_  B  /\  s  =/=  (/)  /\  A. z  e.  P  A. a  e.  s  A. b  e.  s  ( (
z ( .s `  L ) a ) ( +g  `  L
) b )  e.  s )  <->  ( s  C_  B  /\  ( s  =/=  (/)  /\  A. z  e.  P  A. a  e.  s  A. b  e.  s  ( (
z ( .s `  L ) a ) ( +g  `  L
) b )  e.  s ) ) )
3229, 30, 313bitr4g 288 . . . 4  |-  ( ph  ->  ( ( s  C_  B  /\  s  =/=  (/)  /\  A. z  e.  P  A. a  e.  s  A. b  e.  s  (
( z ( .s
`  K ) a ) ( +g  `  K
) b )  e.  s )  <->  ( s  C_  B  /\  s  =/=  (/)  /\  A. z  e.  P  A. a  e.  s  A. b  e.  s  ( ( z ( .s `  L
) a ) ( +g  `  L ) b )  e.  s ) ) )
33 lsspropd.b1 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  K ) )
3433sseq2d 3470 . . . . 5  |-  ( ph  ->  ( s  C_  B  <->  s 
C_  ( Base `  K
) ) )
35 lsspropd.p1 . . . . . 6  |-  ( ph  ->  P  =  ( Base `  (Scalar `  K )
) )
3635raleqdv 3010 . . . . 5  |-  ( ph  ->  ( A. z  e.  P  A. a  e.  s  A. b  e.  s  ( ( z ( .s `  K
) a ) ( +g  `  K ) b )  e.  s  <->  A. z  e.  ( Base `  (Scalar `  K
) ) A. a  e.  s  A. b  e.  s  ( (
z ( .s `  K ) a ) ( +g  `  K
) b )  e.  s ) )
3734, 363anbi13d 1303 . . . 4  |-  ( ph  ->  ( ( s  C_  B  /\  s  =/=  (/)  /\  A. z  e.  P  A. a  e.  s  A. b  e.  s  (
( z ( .s
`  K ) a ) ( +g  `  K
) b )  e.  s )  <->  ( s  C_  ( Base `  K
)  /\  s  =/=  (/) 
/\  A. z  e.  (
Base `  (Scalar `  K
) ) A. a  e.  s  A. b  e.  s  ( (
z ( .s `  K ) a ) ( +g  `  K
) b )  e.  s ) ) )
38 lsspropd.b2 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  L ) )
3938sseq2d 3470 . . . . 5  |-  ( ph  ->  ( s  C_  B  <->  s 
C_  ( Base `  L
) ) )
40 lsspropd.p2 . . . . . 6  |-  ( ph  ->  P  =  ( Base `  (Scalar `  L )
) )
4140raleqdv 3010 . . . . 5  |-  ( ph  ->  ( A. z  e.  P  A. a  e.  s  A. b  e.  s  ( ( z ( .s `  L
) a ) ( +g  `  L ) b )  e.  s  <->  A. z  e.  ( Base `  (Scalar `  L
) ) A. a  e.  s  A. b  e.  s  ( (
z ( .s `  L ) a ) ( +g  `  L
) b )  e.  s ) )
4239, 413anbi13d 1303 . . . 4  |-  ( ph  ->  ( ( s  C_  B  /\  s  =/=  (/)  /\  A. z  e.  P  A. a  e.  s  A. b  e.  s  (
( z ( .s
`  L ) a ) ( +g  `  L
) b )  e.  s )  <->  ( s  C_  ( Base `  L
)  /\  s  =/=  (/) 
/\  A. z  e.  (
Base `  (Scalar `  L
) ) A. a  e.  s  A. b  e.  s  ( (
z ( .s `  L ) a ) ( +g  `  L
) b )  e.  s ) ) )
4332, 37, 423bitr3d 283 . . 3  |-  ( ph  ->  ( ( s  C_  ( Base `  K )  /\  s  =/=  (/)  /\  A. z  e.  ( Base `  (Scalar `  K )
) A. a  e.  s  A. b  e.  s  ( ( z ( .s `  K
) a ) ( +g  `  K ) b )  e.  s )  <->  ( s  C_  ( Base `  L )  /\  s  =/=  (/)  /\  A. z  e.  ( Base `  (Scalar `  L )
) A. a  e.  s  A. b  e.  s  ( ( z ( .s `  L
) a ) ( +g  `  L ) b )  e.  s ) ) )
44 eqid 2402 . . . 4  |-  (Scalar `  K )  =  (Scalar `  K )
45 eqid 2402 . . . 4  |-  ( Base `  (Scalar `  K )
)  =  ( Base `  (Scalar `  K )
)
46 eqid 2402 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
47 eqid 2402 . . . 4  |-  ( +g  `  K )  =  ( +g  `  K )
48 eqid 2402 . . . 4  |-  ( .s
`  K )  =  ( .s `  K
)
49 eqid 2402 . . . 4  |-  ( LSubSp `  K )  =  (
LSubSp `  K )
5044, 45, 46, 47, 48, 49islss 17901 . . 3  |-  ( s  e.  ( LSubSp `  K
)  <->  ( s  C_  ( Base `  K )  /\  s  =/=  (/)  /\  A. z  e.  ( Base `  (Scalar `  K )
) A. a  e.  s  A. b  e.  s  ( ( z ( .s `  K
) a ) ( +g  `  K ) b )  e.  s ) )
51 eqid 2402 . . . 4  |-  (Scalar `  L )  =  (Scalar `  L )
52 eqid 2402 . . . 4  |-  ( Base `  (Scalar `  L )
)  =  ( Base `  (Scalar `  L )
)
53 eqid 2402 . . . 4  |-  ( Base `  L )  =  (
Base `  L )
54 eqid 2402 . . . 4  |-  ( +g  `  L )  =  ( +g  `  L )
55 eqid 2402 . . . 4  |-  ( .s
`  L )  =  ( .s `  L
)
56 eqid 2402 . . . 4  |-  ( LSubSp `  L )  =  (
LSubSp `  L )
5751, 52, 53, 54, 55, 56islss 17901 . . 3  |-  ( s  e.  ( LSubSp `  L
)  <->  ( s  C_  ( Base `  L )  /\  s  =/=  (/)  /\  A. z  e.  ( Base `  (Scalar `  L )
) A. a  e.  s  A. b  e.  s  ( ( z ( .s `  L
) a ) ( +g  `  L ) b )  e.  s ) )
5843, 50, 573bitr4g 288 . 2  |-  ( ph  ->  ( s  e.  (
LSubSp `  K )  <->  s  e.  ( LSubSp `  L )
) )
5958eqrdv 2399 1  |-  ( ph  ->  ( LSubSp `  K )  =  ( LSubSp `  L
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842    =/= wne 2598   A.wral 2754    C_ wss 3414   (/)c0 3738   ` cfv 5569  (class class class)co 6278   Basecbs 14841   +g cplusg 14909  Scalarcsca 14912   .scvsca 14913   LSubSpclss 17898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-rab 2763  df-v 3061  df-sbc 3278  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-iota 5533  df-fun 5571  df-fv 5577  df-ov 6281  df-lss 17899
This theorem is referenced by:  lsppropd  17984  lidlrsppropd  18198  ply1lss  18555
  Copyright terms: Public domain W3C validator