MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssnlm Structured version   Unicode version

Theorem lssnlm 21054
Description: A subspace of a normed module is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
lssnlm.x  |-  X  =  ( Ws  U )
lssnlm.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lssnlm  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  X  e. NrmMod )

Proof of Theorem lssnlm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nlmngp 21031 . . . . 5  |-  ( W  e. NrmMod  ->  W  e. NrmGrp )
21adantr 465 . . . 4  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  W  e. NrmGrp )
3 nlmlmod 21032 . . . . 5  |-  ( W  e. NrmMod  ->  W  e.  LMod )
4 lssnlm.s . . . . . 6  |-  S  =  ( LSubSp `  W )
54lsssubg 17451 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  e.  (SubGrp `  W )
)
63, 5sylan 471 . . . 4  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  U  e.  (SubGrp `  W )
)
7 lssnlm.x . . . . 5  |-  X  =  ( Ws  U )
87subgngp 20994 . . . 4  |-  ( ( W  e. NrmGrp  /\  U  e.  (SubGrp `  W )
)  ->  X  e. NrmGrp )
92, 6, 8syl2anc 661 . . 3  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  X  e. NrmGrp )
107, 4lsslmod 17454 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  X  e.  LMod )
113, 10sylan 471 . . 3  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  X  e.  LMod )
12 eqid 2467 . . . . . 6  |-  (Scalar `  W )  =  (Scalar `  W )
137, 12resssca 14645 . . . . 5  |-  ( U  e.  S  ->  (Scalar `  W )  =  (Scalar `  X ) )
1413adantl 466 . . . 4  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  (Scalar `  W )  =  (Scalar `  X ) )
1512nlmnrg 21033 . . . . 5  |-  ( W  e. NrmMod  ->  (Scalar `  W )  e. NrmRing )
1615adantr 465 . . . 4  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  (Scalar `  W )  e. NrmRing )
1714, 16eqeltrrd 2556 . . 3  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  (Scalar `  X )  e. NrmRing )
189, 11, 173jca 1176 . 2  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  ( X  e. NrmGrp  /\  X  e. 
LMod  /\  (Scalar `  X
)  e. NrmRing ) )
19 simpll 753 . . . . 5  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  W  e. NrmMod )
20 simprl 755 . . . . . 6  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  x  e.  ( Base `  (Scalar `  X ) ) )
2114adantr 465 . . . . . . 7  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (Scalar `  W )  =  (Scalar `  X ) )
2221fveq2d 5875 . . . . . 6  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  ( Base `  (Scalar `  W
) )  =  (
Base `  (Scalar `  X
) ) )
2320, 22eleqtrrd 2558 . . . . 5  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  x  e.  ( Base `  (Scalar `  W ) ) )
246adantr 465 . . . . . . 7  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  U  e.  (SubGrp `  W )
)
25 eqid 2467 . . . . . . . 8  |-  ( Base `  W )  =  (
Base `  W )
2625subgss 16051 . . . . . . 7  |-  ( U  e.  (SubGrp `  W
)  ->  U  C_  ( Base `  W ) )
2724, 26syl 16 . . . . . 6  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  U  C_  ( Base `  W
) )
28 simprr 756 . . . . . . 7  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  y  e.  ( Base `  X
) )
297subgbas 16054 . . . . . . . 8  |-  ( U  e.  (SubGrp `  W
)  ->  U  =  ( Base `  X )
)
3024, 29syl 16 . . . . . . 7  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  U  =  ( Base `  X
) )
3128, 30eleqtrrd 2558 . . . . . 6  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  y  e.  U )
3227, 31sseldd 3510 . . . . 5  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  y  e.  ( Base `  W
) )
33 eqid 2467 . . . . . 6  |-  ( norm `  W )  =  (
norm `  W )
34 eqid 2467 . . . . . 6  |-  ( .s
`  W )  =  ( .s `  W
)
35 eqid 2467 . . . . . 6  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
36 eqid 2467 . . . . . 6  |-  ( norm `  (Scalar `  W )
)  =  ( norm `  (Scalar `  W )
)
3725, 33, 34, 12, 35, 36nmvs 21030 . . . . 5  |-  ( ( W  e. NrmMod  /\  x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( Base `  W ) )  -> 
( ( norm `  W
) `  ( x
( .s `  W
) y ) )  =  ( ( (
norm `  (Scalar `  W
) ) `  x
)  x.  ( (
norm `  W ) `  y ) ) )
3819, 23, 32, 37syl3anc 1228 . . . 4  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
( norm `  W ) `  ( x ( .s
`  W ) y ) )  =  ( ( ( norm `  (Scalar `  W ) ) `  x )  x.  (
( norm `  W ) `  y ) ) )
39 simplr 754 . . . . . . . 8  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  U  e.  S )
407, 34ressvsca 14646 . . . . . . . 8  |-  ( U  e.  S  ->  ( .s `  W )  =  ( .s `  X
) )
4139, 40syl 16 . . . . . . 7  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  ( .s `  W )  =  ( .s `  X
) )
4241oveqd 6311 . . . . . 6  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
x ( .s `  W ) y )  =  ( x ( .s `  X ) y ) )
4342fveq2d 5875 . . . . 5  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
( norm `  X ) `  ( x ( .s
`  W ) y ) )  =  ( ( norm `  X
) `  ( x
( .s `  X
) y ) ) )
443ad2antrr 725 . . . . . . 7  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  W  e.  LMod )
4512, 34, 35, 4lssvscl 17449 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  U )
)  ->  ( x
( .s `  W
) y )  e.  U )
4644, 39, 23, 31, 45syl22anc 1229 . . . . . 6  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
x ( .s `  W ) y )  e.  U )
47 eqid 2467 . . . . . . 7  |-  ( norm `  X )  =  (
norm `  X )
487, 33, 47subgnm2 20993 . . . . . 6  |-  ( ( U  e.  (SubGrp `  W )  /\  (
x ( .s `  W ) y )  e.  U )  -> 
( ( norm `  X
) `  ( x
( .s `  W
) y ) )  =  ( ( norm `  W ) `  (
x ( .s `  W ) y ) ) )
4924, 46, 48syl2anc 661 . . . . 5  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
( norm `  X ) `  ( x ( .s
`  W ) y ) )  =  ( ( norm `  W
) `  ( x
( .s `  W
) y ) ) )
5043, 49eqtr3d 2510 . . . 4  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
( norm `  X ) `  ( x ( .s
`  X ) y ) )  =  ( ( norm `  W
) `  ( x
( .s `  W
) y ) ) )
5121eqcomd 2475 . . . . . . 7  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (Scalar `  X )  =  (Scalar `  W ) )
5251fveq2d 5875 . . . . . 6  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  ( norm `  (Scalar `  X
) )  =  (
norm `  (Scalar `  W
) ) )
5352fveq1d 5873 . . . . 5  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
( norm `  (Scalar `  X
) ) `  x
)  =  ( (
norm `  (Scalar `  W
) ) `  x
) )
547, 33, 47subgnm2 20993 . . . . . 6  |-  ( ( U  e.  (SubGrp `  W )  /\  y  e.  U )  ->  (
( norm `  X ) `  y )  =  ( ( norm `  W
) `  y )
)
5524, 31, 54syl2anc 661 . . . . 5  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
( norm `  X ) `  y )  =  ( ( norm `  W
) `  y )
)
5653, 55oveq12d 6312 . . . 4  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
( ( norm `  (Scalar `  X ) ) `  x )  x.  (
( norm `  X ) `  y ) )  =  ( ( ( norm `  (Scalar `  W )
) `  x )  x.  ( ( norm `  W
) `  y )
) )
5738, 50, 563eqtr4d 2518 . . 3  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
( norm `  X ) `  ( x ( .s
`  X ) y ) )  =  ( ( ( norm `  (Scalar `  X ) ) `  x )  x.  (
( norm `  X ) `  y ) ) )
5857ralrimivva 2888 . 2  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  A. x  e.  ( Base `  (Scalar `  X ) ) A. y  e.  ( Base `  X ) ( (
norm `  X ) `  ( x ( .s
`  X ) y ) )  =  ( ( ( norm `  (Scalar `  X ) ) `  x )  x.  (
( norm `  X ) `  y ) ) )
59 eqid 2467 . . 3  |-  ( Base `  X )  =  (
Base `  X )
60 eqid 2467 . . 3  |-  ( .s
`  X )  =  ( .s `  X
)
61 eqid 2467 . . 3  |-  (Scalar `  X )  =  (Scalar `  X )
62 eqid 2467 . . 3  |-  ( Base `  (Scalar `  X )
)  =  ( Base `  (Scalar `  X )
)
63 eqid 2467 . . 3  |-  ( norm `  (Scalar `  X )
)  =  ( norm `  (Scalar `  X )
)
6459, 47, 60, 61, 62, 63isnlm 21029 . 2  |-  ( X  e. NrmMod 
<->  ( ( X  e. NrmGrp  /\  X  e.  LMod  /\  (Scalar `  X )  e. NrmRing )  /\  A. x  e.  ( Base `  (Scalar `  X ) ) A. y  e.  ( Base `  X ) ( (
norm `  X ) `  ( x ( .s
`  X ) y ) )  =  ( ( ( norm `  (Scalar `  X ) ) `  x )  x.  (
( norm `  X ) `  y ) ) ) )
6518, 58, 64sylanbrc 664 1  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  X  e. NrmMod )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2817    C_ wss 3481   ` cfv 5593  (class class class)co 6294    x. cmul 9507   Basecbs 14502   ↾s cress 14503  Scalarcsca 14570   .scvsca 14571  SubGrpcsubg 16044   LModclmod 17360   LSubSpclss 17426   normcnm 20942  NrmGrpcngp 20943  NrmRingcnrg 20945  NrmModcnlm 20946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4563  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6586  ax-cnex 9558  ax-resscn 9559  ax-1cn 9560  ax-icn 9561  ax-addcl 9562  ax-addrcl 9563  ax-mulcl 9564  ax-mulrcl 9565  ax-mulcom 9566  ax-addass 9567  ax-mulass 9568  ax-distr 9569  ax-i2m1 9570  ax-1ne0 9571  ax-1rid 9572  ax-rnegex 9573  ax-rrecex 9574  ax-cnre 9575  ax-pre-lttri 9576  ax-pre-lttrn 9577  ax-pre-ltadd 9578  ax-pre-mulgt0 9579  ax-pre-sup 9580
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4251  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-riota 6255  df-ov 6297  df-oprab 6298  df-mpt2 6299  df-om 6695  df-1st 6794  df-2nd 6795  df-recs 7052  df-rdg 7086  df-er 7321  df-map 7432  df-en 7527  df-dom 7528  df-sdom 7529  df-sup 7911  df-pnf 9640  df-mnf 9641  df-xr 9642  df-ltxr 9643  df-le 9644  df-sub 9817  df-neg 9818  df-div 10217  df-nn 10547  df-2 10604  df-3 10605  df-4 10606  df-5 10607  df-6 10608  df-7 10609  df-8 10610  df-9 10611  df-10 10612  df-n0 10806  df-z 10875  df-dec 10987  df-uz 11093  df-q 11193  df-rp 11231  df-xneg 11328  df-xadd 11329  df-xmul 11330  df-ndx 14505  df-slot 14506  df-base 14507  df-sets 14508  df-ress 14509  df-plusg 14580  df-sca 14583  df-vsca 14584  df-tset 14586  df-ds 14589  df-rest 14690  df-topn 14691  df-0g 14709  df-topgen 14711  df-mgm 15741  df-sgrp 15764  df-mnd 15774  df-grp 15906  df-minusg 15907  df-sbg 15908  df-subg 16047  df-mgp 16991  df-ur 17003  df-ring 17049  df-lmod 17362  df-lss 17427  df-psmet 18258  df-xmet 18259  df-met 18260  df-bl 18261  df-mopn 18262  df-top 19245  df-bases 19247  df-topon 19248  df-topsp 19249  df-xms 20668  df-ms 20669  df-nm 20948  df-ngp 20949  df-nlm 20952
This theorem is referenced by:  lssnvc  21055
  Copyright terms: Public domain W3C validator