Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lssat Structured version   Unicode version

Theorem lssat 32291
Description: Two subspaces in a proper subset relationship imply the existence of a 1-dim subspace less than or equal to one but not the other. (chpssati 27851 analog.) (Contributed by NM, 9-Apr-2014.)
Hypotheses
Ref Expression
lssat.s  |-  S  =  ( LSubSp `  W )
lssat.a  |-  A  =  (LSAtoms `  W )
Assertion
Ref Expression
lssat  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  U  C.  V )  ->  E. p  e.  A  ( p  C_  V  /\  -.  p  C_  U ) )
Distinct variable groups:    A, p    S, p    U, p    V, p    W, p

Proof of Theorem lssat
StepHypRef Expression
1 dfpss3 3557 . . 3  |-  ( U 
C.  V  <->  ( U  C_  V  /\  -.  V  C_  U ) )
21simprbi 465 . 2  |-  ( U 
C.  V  ->  -.  V  C_  U )
3 ss2rab 3543 . . . . . 6  |-  ( { p  e.  A  |  p  C_  V }  C_  { p  e.  A  |  p  C_  U }  <->  A. p  e.  A  ( p  C_  V  ->  p  C_  U
) )
4 iman 425 . . . . . . 7  |-  ( ( p  C_  V  ->  p 
C_  U )  <->  -.  (
p  C_  V  /\  -.  p  C_  U ) )
54ralbii 2863 . . . . . 6  |-  ( A. p  e.  A  (
p  C_  V  ->  p 
C_  U )  <->  A. p  e.  A  -.  (
p  C_  V  /\  -.  p  C_  U ) )
63, 5bitr2i 253 . . . . 5  |-  ( A. p  e.  A  -.  ( p  C_  V  /\  -.  p  C_  U )  <->  { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }
)
7 simpl1 1008 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }
)  ->  W  e.  LMod )
8 lssat.s . . . . . . . . . . 11  |-  S  =  ( LSubSp `  W )
9 lssat.a . . . . . . . . . . 11  |-  A  =  (LSAtoms `  W )
108, 9lsatlss 32271 . . . . . . . . . 10  |-  ( W  e.  LMod  ->  A  C_  S )
11 rabss2 3550 . . . . . . . . . 10  |-  ( A 
C_  S  ->  { p  e.  A  |  p  C_  U }  C_  { p  e.  S  |  p  C_  U } )
12 uniss 4243 . . . . . . . . . 10  |-  ( { p  e.  A  |  p  C_  U }  C_  { p  e.  S  |  p  C_  U }  ->  U. { p  e.  A  |  p  C_  U }  C_ 
U. { p  e.  S  |  p  C_  U } )
137, 10, 11, 124syl 19 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }
)  ->  U. { p  e.  A  |  p  C_  U }  C_  U. {
p  e.  S  |  p  C_  U } )
14 simpl2 1009 . . . . . . . . . . 11  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }
)  ->  U  e.  S )
15 unimax 4257 . . . . . . . . . . 11  |-  ( U  e.  S  ->  U. {
p  e.  S  |  p  C_  U }  =  U )
1614, 15syl 17 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }
)  ->  U. { p  e.  S  |  p  C_  U }  =  U )
17 eqid 2429 . . . . . . . . . . . 12  |-  ( Base `  W )  =  (
Base `  W )
1817, 8lssss 18095 . . . . . . . . . . 11  |-  ( U  e.  S  ->  U  C_  ( Base `  W
) )
1914, 18syl 17 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }
)  ->  U  C_  ( Base `  W ) )
2016, 19eqsstrd 3504 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }
)  ->  U. { p  e.  S  |  p  C_  U }  C_  ( Base `  W ) )
2113, 20sstrd 3480 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }
)  ->  U. { p  e.  A  |  p  C_  U }  C_  ( Base `  W ) )
22 uniss 4243 . . . . . . . . 9  |-  ( { p  e.  A  |  p  C_  V }  C_  { p  e.  A  |  p  C_  U }  ->  U. { p  e.  A  |  p  C_  V }  C_ 
U. { p  e.  A  |  p  C_  U } )
2322adantl 467 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }
)  ->  U. { p  e.  A  |  p  C_  V }  C_  U. {
p  e.  A  |  p  C_  U } )
24 eqid 2429 . . . . . . . . 9  |-  ( LSpan `  W )  =  (
LSpan `  W )
2517, 24lspss 18142 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  U. { p  e.  A  |  p  C_  U }  C_  ( Base `  W
)  /\  U. { p  e.  A  |  p  C_  V }  C_  U. {
p  e.  A  |  p  C_  U } )  ->  ( ( LSpan `  W ) `  U. { p  e.  A  |  p  C_  V }
)  C_  ( ( LSpan `  W ) `  U. { p  e.  A  |  p  C_  U }
) )
267, 21, 23, 25syl3anc 1264 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }
)  ->  ( ( LSpan `  W ) `  U. { p  e.  A  |  p  C_  V }
)  C_  ( ( LSpan `  W ) `  U. { p  e.  A  |  p  C_  U }
) )
27 simpl3 1010 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }
)  ->  V  e.  S )
288, 24, 9lssats 32287 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  V  e.  S )  ->  V  =  ( ( LSpan `  W ) `  U. { p  e.  A  |  p  C_  V }
) )
297, 27, 28syl2anc 665 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }
)  ->  V  =  ( ( LSpan `  W
) `  U. { p  e.  A  |  p  C_  V } ) )
308, 24, 9lssats 32287 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  =  ( ( LSpan `  W ) `  U. { p  e.  A  |  p  C_  U }
) )
317, 14, 30syl2anc 665 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }
)  ->  U  =  ( ( LSpan `  W
) `  U. { p  e.  A  |  p  C_  U } ) )
3226, 29, 313sstr4d 3513 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }
)  ->  V  C_  U
)
3332ex 435 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  ->  ( { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }  ->  V  C_  U )
)
346, 33syl5bi 220 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  ->  ( A. p  e.  A  -.  ( p  C_  V  /\  -.  p  C_  U
)  ->  V  C_  U
) )
3534con3dimp 442 . . 3  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  -.  V  C_  U
)  ->  -.  A. p  e.  A  -.  (
p  C_  V  /\  -.  p  C_  U ) )
36 dfrex2 2883 . . 3  |-  ( E. p  e.  A  ( p  C_  V  /\  -.  p  C_  U )  <->  -.  A. p  e.  A  -.  ( p  C_  V  /\  -.  p  C_  U
) )
3735, 36sylibr 215 . 2  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  -.  V  C_  U
)  ->  E. p  e.  A  ( p  C_  V  /\  -.  p  C_  U ) )
382, 37sylan2 476 1  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  U  C.  V )  ->  E. p  e.  A  ( p  C_  V  /\  -.  p  C_  U ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870   A.wral 2782   E.wrex 2783   {crab 2786    C_ wss 3442    C. wpss 3443   U.cuni 4222   ` cfv 5601   Basecbs 15084   LModclmod 18026   LSubSpclss 18090   LSpanclspn 18129  LSAtomsclsa 32249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-2 10668  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-plusg 15165  df-0g 15299  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-grp 16624  df-minusg 16625  df-sbg 16626  df-mgp 17659  df-ur 17671  df-ring 17717  df-lmod 18028  df-lss 18091  df-lsp 18130  df-lsatoms 32251
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator