MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lss1d Structured version   Unicode version

Theorem lss1d 17385
Description: One-dimensional subspace (or zero-dimensional if  X is the zero vector). (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lss1d.v  |-  V  =  ( Base `  W
)
lss1d.f  |-  F  =  (Scalar `  W )
lss1d.t  |-  .x.  =  ( .s `  W )
lss1d.k  |-  K  =  ( Base `  F
)
lss1d.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lss1d  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  e.  S )
Distinct variable groups:    v, k, K    .x. , k, v    k, V, v    k, F    k, W, v    k, X, v
Allowed substitution hints:    S( v, k)    F( v)

Proof of Theorem lss1d
Dummy variables  a 
b  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lss1d.f . . 3  |-  F  =  (Scalar `  W )
21a1i 11 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  F  =  (Scalar `  W )
)
3 lss1d.k . . 3  |-  K  =  ( Base `  F
)
43a1i 11 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  K  =  ( Base `  F
) )
5 lss1d.v . . 3  |-  V  =  ( Base `  W
)
65a1i 11 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  V  =  ( Base `  W
) )
7 eqidd 2461 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( +g  `  W )  =  ( +g  `  W
) )
8 lss1d.t . . 3  |-  .x.  =  ( .s `  W )
98a1i 11 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  .x.  =  ( .s `  W ) )
10 lss1d.s . . 3  |-  S  =  ( LSubSp `  W )
1110a1i 11 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  S  =  ( LSubSp `  W
) )
125, 1, 8, 3lmodvscl 17305 . . . . . . 7  |-  ( ( W  e.  LMod  /\  k  e.  K  /\  X  e.  V )  ->  (
k  .x.  X )  e.  V )
13123expa 1191 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  k  e.  K )  /\  X  e.  V
)  ->  ( k  .x.  X )  e.  V
)
1413an32s 802 . . . . 5  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  ( k  .x.  X )  e.  V
)
15 eleq1a 2543 . . . . 5  |-  ( ( k  .x.  X )  e.  V  ->  (
v  =  ( k 
.x.  X )  -> 
v  e.  V ) )
1614, 15syl 16 . . . 4  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  ( v  =  ( k  .x.  X )  ->  v  e.  V ) )
1716rexlimdva 2948 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  ->  v  e.  V ) )
1817abssdv 3567 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  C_  V )
19 eqid 2460 . . . . 5  |-  ( 0g
`  F )  =  ( 0g `  F
)
201, 3, 19lmod0cl 17314 . . . 4  |-  ( W  e.  LMod  ->  ( 0g
`  F )  e.  K )
2120adantr 465 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( 0g `  F )  e.  K )
22 nfcv 2622 . . . 4  |-  F/_ k
( 0g `  F
)
23 nfre1 2918 . . . . . 6  |-  F/ k E. k  e.  K  v  =  ( k  .x.  X )
2423nfab 2626 . . . . 5  |-  F/_ k { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }
25 nfcv 2622 . . . . 5  |-  F/_ k (/)
2624, 25nfne 2791 . . . 4  |-  F/ k { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  =/=  (/)
27 biidd 237 . . . 4  |-  ( k  =  ( 0g `  F )  ->  ( { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  =/=  (/)  <->  { v  |  E. k  e.  K  v  =  ( k  .x.  X
) }  =/=  (/) ) )
28 ovex 6300 . . . . . 6  |-  ( k 
.x.  X )  e. 
_V
2928elabrex 6134 . . . . 5  |-  ( k  e.  K  ->  (
k  .x.  X )  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )
30 ne0i 3784 . . . . 5  |-  ( ( k  .x.  X )  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X
) }  =/=  (/) )
3129, 30syl 16 . . . 4  |-  ( k  e.  K  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  =/=  (/) )
3222, 26, 27, 31vtoclgaf 3169 . . 3  |-  ( ( 0g `  F )  e.  K  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  =/=  (/) )
3321, 32syl 16 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  =/=  (/) )
34 vex 3109 . . . . . . . . . . 11  |-  a  e. 
_V
35 eqeq1 2464 . . . . . . . . . . . 12  |-  ( v  =  a  ->  (
v  =  ( k 
.x.  X )  <->  a  =  ( k  .x.  X
) ) )
3635rexbidv 2966 . . . . . . . . . . 11  |-  ( v  =  a  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  <->  E. k  e.  K  a  =  ( k  .x.  X
) ) )
3734, 36elab 3243 . . . . . . . . . 10  |-  ( a  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  a  =  ( k  .x.  X
) )
38 oveq1 6282 . . . . . . . . . . . 12  |-  ( k  =  y  ->  (
k  .x.  X )  =  ( y  .x.  X ) )
3938eqeq2d 2474 . . . . . . . . . . 11  |-  ( k  =  y  ->  (
a  =  ( k 
.x.  X )  <->  a  =  ( y  .x.  X
) ) )
4039cbvrexv 3082 . . . . . . . . . 10  |-  ( E. k  e.  K  a  =  ( k  .x.  X )  <->  E. y  e.  K  a  =  ( y  .x.  X
) )
4137, 40bitri 249 . . . . . . . . 9  |-  ( a  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. y  e.  K  a  =  ( y  .x.  X
) )
42 vex 3109 . . . . . . . . . . 11  |-  b  e. 
_V
43 eqeq1 2464 . . . . . . . . . . . 12  |-  ( v  =  b  ->  (
v  =  ( k 
.x.  X )  <->  b  =  ( k  .x.  X
) ) )
4443rexbidv 2966 . . . . . . . . . . 11  |-  ( v  =  b  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  <->  E. k  e.  K  b  =  ( k  .x.  X
) ) )
4542, 44elab 3243 . . . . . . . . . 10  |-  ( b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  b  =  ( k  .x.  X
) )
46 oveq1 6282 . . . . . . . . . . . 12  |-  ( k  =  z  ->  (
k  .x.  X )  =  ( z  .x.  X ) )
4746eqeq2d 2474 . . . . . . . . . . 11  |-  ( k  =  z  ->  (
b  =  ( k 
.x.  X )  <->  b  =  ( z  .x.  X
) ) )
4847cbvrexv 3082 . . . . . . . . . 10  |-  ( E. k  e.  K  b  =  ( k  .x.  X )  <->  E. z  e.  K  b  =  ( z  .x.  X
) )
4945, 48bitri 249 . . . . . . . . 9  |-  ( b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. z  e.  K  b  =  ( z  .x.  X
) )
5041, 49anbi12i 697 . . . . . . . 8  |-  ( ( a  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  /\  b  e. 
{ v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )  <-> 
( E. y  e.  K  a  =  ( y  .x.  X )  /\  E. z  e.  K  b  =  ( z  .x.  X ) ) )
51 reeanv 3022 . . . . . . . 8  |-  ( E. y  e.  K  E. z  e.  K  (
a  =  ( y 
.x.  X )  /\  b  =  ( z  .x.  X ) )  <->  ( E. y  e.  K  a  =  ( y  .x.  X )  /\  E. z  e.  K  b  =  ( z  .x.  X ) ) )
5250, 51bitr4i 252 . . . . . . 7  |-  ( ( a  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  /\  b  e. 
{ v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )  <->  E. y  e.  K  E. z  e.  K  ( a  =  ( y  .x.  X )  /\  b  =  ( z  .x.  X ) ) )
53 simpll 753 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  ->  W  e.  LMod )
54 simprr 756 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  ->  x  e.  K )
55 simprll 761 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
y  e.  K )
56 eqid 2460 . . . . . . . . . . . . . . 15  |-  ( .r
`  F )  =  ( .r `  F
)
571, 3, 56lmodmcl 17300 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LMod  /\  x  e.  K  /\  y  e.  K )  ->  (
x ( .r `  F ) y )  e.  K )
5853, 54, 55, 57syl3anc 1223 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( x ( .r
`  F ) y )  e.  K )
59 simprlr 762 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
z  e.  K )
60 eqid 2460 . . . . . . . . . . . . . 14  |-  ( +g  `  F )  =  ( +g  `  F )
611, 3, 60lmodacl 17299 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  (
x ( .r `  F ) y )  e.  K  /\  z  e.  K )  ->  (
( x ( .r
`  F ) y ) ( +g  `  F
) z )  e.  K )
6253, 58, 59, 61syl3anc 1223 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( x ( .r `  F ) y ) ( +g  `  F ) z )  e.  K )
63 simplr 754 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  ->  X  e.  V )
64 eqid 2460 . . . . . . . . . . . . . . 15  |-  ( +g  `  W )  =  ( +g  `  W )
655, 64, 1, 8, 3, 60lmodvsdir 17312 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LMod  /\  (
( x ( .r
`  F ) y )  e.  K  /\  z  e.  K  /\  X  e.  V )
)  ->  ( (
( x ( .r
`  F ) y ) ( +g  `  F
) z )  .x.  X )  =  ( ( ( x ( .r `  F ) y )  .x.  X
) ( +g  `  W
) ( z  .x.  X ) ) )
6653, 58, 59, 63, 65syl13anc 1225 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( ( x ( .r `  F
) y ) ( +g  `  F ) z )  .x.  X
)  =  ( ( ( x ( .r
`  F ) y )  .x.  X ) ( +g  `  W
) ( z  .x.  X ) ) )
675, 1, 8, 3, 56lmodvsass 17313 . . . . . . . . . . . . . . 15  |-  ( ( W  e.  LMod  /\  (
x  e.  K  /\  y  e.  K  /\  X  e.  V )
)  ->  ( (
x ( .r `  F ) y ) 
.x.  X )  =  ( x  .x.  (
y  .x.  X )
) )
6853, 54, 55, 63, 67syl13anc 1225 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( x ( .r `  F ) y )  .x.  X
)  =  ( x 
.x.  ( y  .x.  X ) ) )
6968oveq1d 6290 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( ( x ( .r `  F
) y )  .x.  X ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( ( x 
.x.  ( y  .x.  X ) ) ( +g  `  W ) ( z  .x.  X
) ) )
7066, 69eqtr2d 2502 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( x  .x.  ( y  .x.  X
) ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( ( ( x ( .r `  F ) y ) ( +g  `  F
) z )  .x.  X ) )
71 oveq1 6282 . . . . . . . . . . . . . 14  |-  ( k  =  ( ( x ( .r `  F
) y ) ( +g  `  F ) z )  ->  (
k  .x.  X )  =  ( ( ( x ( .r `  F ) y ) ( +g  `  F
) z )  .x.  X ) )
7271eqeq2d 2474 . . . . . . . . . . . . 13  |-  ( k  =  ( ( x ( .r `  F
) y ) ( +g  `  F ) z )  ->  (
( ( x  .x.  ( y  .x.  X
) ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( k  .x.  X )  <->  ( (
x  .x.  ( y  .x.  X ) ) ( +g  `  W ) ( z  .x.  X
) )  =  ( ( ( x ( .r `  F ) y ) ( +g  `  F ) z ) 
.x.  X ) ) )
7372rspcev 3207 . . . . . . . . . . . 12  |-  ( ( ( ( x ( .r `  F ) y ) ( +g  `  F ) z )  e.  K  /\  (
( x  .x.  (
y  .x.  X )
) ( +g  `  W
) ( z  .x.  X ) )  =  ( ( ( x ( .r `  F
) y ) ( +g  `  F ) z )  .x.  X
) )  ->  E. k  e.  K  ( (
x  .x.  ( y  .x.  X ) ) ( +g  `  W ) ( z  .x.  X
) )  =  ( k  .x.  X ) )
7462, 70, 73syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  ->  E. k  e.  K  ( ( x  .x.  ( y  .x.  X
) ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( k  .x.  X ) )
75 oveq2 6283 . . . . . . . . . . . . . 14  |-  ( a  =  ( y  .x.  X )  ->  (
x  .x.  a )  =  ( x  .x.  ( y  .x.  X
) ) )
76 oveq12 6284 . . . . . . . . . . . . . 14  |-  ( ( ( x  .x.  a
)  =  ( x 
.x.  ( y  .x.  X ) )  /\  b  =  ( z  .x.  X ) )  -> 
( ( x  .x.  a ) ( +g  `  W ) b )  =  ( ( x 
.x.  ( y  .x.  X ) ) ( +g  `  W ) ( z  .x.  X
) ) )
7775, 76sylan 471 . . . . . . . . . . . . 13  |-  ( ( a  =  ( y 
.x.  X )  /\  b  =  ( z  .x.  X ) )  -> 
( ( x  .x.  a ) ( +g  `  W ) b )  =  ( ( x 
.x.  ( y  .x.  X ) ) ( +g  `  W ) ( z  .x.  X
) ) )
7877eqeq1d 2462 . . . . . . . . . . . 12  |-  ( ( a  =  ( y 
.x.  X )  /\  b  =  ( z  .x.  X ) )  -> 
( ( ( x 
.x.  a ) ( +g  `  W ) b )  =  ( k  .x.  X )  <-> 
( ( x  .x.  ( y  .x.  X
) ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( k  .x.  X ) ) )
7978rexbidv 2966 . . . . . . . . . . 11  |-  ( ( a  =  ( y 
.x.  X )  /\  b  =  ( z  .x.  X ) )  -> 
( E. k  e.  K  ( ( x 
.x.  a ) ( +g  `  W ) b )  =  ( k  .x.  X )  <->  E. k  e.  K  ( ( x  .x.  ( y  .x.  X
) ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( k  .x.  X ) ) )
8074, 79syl5ibrcom 222 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( a  =  ( y  .x.  X
)  /\  b  =  ( z  .x.  X
) )  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) )
8180expr 615 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( y  e.  K  /\  z  e.  K ) )  -> 
( x  e.  K  ->  ( ( a  =  ( y  .x.  X
)  /\  b  =  ( z  .x.  X
) )  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) ) )
8281com23 78 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( y  e.  K  /\  z  e.  K ) )  -> 
( ( a  =  ( y  .x.  X
)  /\  b  =  ( z  .x.  X
) )  ->  (
x  e.  K  ->  E. k  e.  K  ( ( x  .x.  a ) ( +g  `  W ) b )  =  ( k  .x.  X ) ) ) )
8382rexlimdvva 2955 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( E. y  e.  K  E. z  e.  K  ( a  =  ( y  .x.  X )  /\  b  =  ( z  .x.  X ) )  ->  ( x  e.  K  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) ) )
8452, 83syl5bi 217 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( a  e.  {
v  |  E. k  e.  K  v  =  ( k  .x.  X
) }  /\  b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )  ->  ( x  e.  K  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) ) )
8584expcomd 438 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  ->  ( a  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  ->  ( x  e.  K  ->  E. k  e.  K  ( ( x  .x.  a ) ( +g  `  W ) b )  =  ( k  .x.  X ) ) ) ) )
8685com24 87 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
x  e.  K  -> 
( a  e.  {
v  |  E. k  e.  K  v  =  ( k  .x.  X
) }  ->  (
b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) ) ) )
87863imp2 1206 . . 3  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( x  e.  K  /\  a  e. 
{ v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  /\  b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } ) )  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) )
88 ovex 6300 . . . 4  |-  ( ( x  .x.  a ) ( +g  `  W
) b )  e. 
_V
89 eqeq1 2464 . . . . 5  |-  ( v  =  ( ( x 
.x.  a ) ( +g  `  W ) b )  ->  (
v  =  ( k 
.x.  X )  <->  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) )
9089rexbidv 2966 . . . 4  |-  ( v  =  ( ( x 
.x.  a ) ( +g  `  W ) b )  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  <->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) )
9188, 90elab 3243 . . 3  |-  ( ( ( x  .x.  a
) ( +g  `  W
) b )  e. 
{ v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) )
9287, 91sylibr 212 . 2  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( x  e.  K  /\  a  e. 
{ v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  /\  b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } ) )  ->  ( (
x  .x.  a )
( +g  `  W ) b )  e.  {
v  |  E. k  e.  K  v  =  ( k  .x.  X
) } )
932, 4, 6, 7, 9, 11, 18, 33, 92islssd 17358 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   {cab 2445    =/= wne 2655   E.wrex 2808   (/)c0 3778   ` cfv 5579  (class class class)co 6275   Basecbs 14479   +g cplusg 14544   .rcmulr 14545  Scalarcsca 14547   .scvsca 14548   0gc0g 14684   LModclmod 17288   LSubSpclss 17354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-recs 7032  df-rdg 7066  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526  df-2 10583  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-plusg 14557  df-0g 14686  df-mnd 15721  df-grp 15851  df-mgp 16925  df-rng 16981  df-lmod 17290  df-lss 17355
This theorem is referenced by:  lspsn  17424
  Copyright terms: Public domain W3C validator