MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lss1d Structured version   Visualization version   Unicode version

Theorem lss1d 18186
Description: One-dimensional subspace (or zero-dimensional if  X is the zero vector). (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lss1d.v  |-  V  =  ( Base `  W
)
lss1d.f  |-  F  =  (Scalar `  W )
lss1d.t  |-  .x.  =  ( .s `  W )
lss1d.k  |-  K  =  ( Base `  F
)
lss1d.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lss1d  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  e.  S )
Distinct variable groups:    v, k, K    .x. , k, v    k, V, v    k, F    k, W, v    k, X, v
Allowed substitution hints:    S( v, k)    F( v)

Proof of Theorem lss1d
Dummy variables  a 
b  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lss1d.f . . 3  |-  F  =  (Scalar `  W )
21a1i 11 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  F  =  (Scalar `  W )
)
3 lss1d.k . . 3  |-  K  =  ( Base `  F
)
43a1i 11 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  K  =  ( Base `  F
) )
5 lss1d.v . . 3  |-  V  =  ( Base `  W
)
65a1i 11 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  V  =  ( Base `  W
) )
7 eqidd 2452 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( +g  `  W )  =  ( +g  `  W
) )
8 lss1d.t . . 3  |-  .x.  =  ( .s `  W )
98a1i 11 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  .x.  =  ( .s `  W ) )
10 lss1d.s . . 3  |-  S  =  ( LSubSp `  W )
1110a1i 11 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  S  =  ( LSubSp `  W
) )
125, 1, 8, 3lmodvscl 18108 . . . . . . 7  |-  ( ( W  e.  LMod  /\  k  e.  K  /\  X  e.  V )  ->  (
k  .x.  X )  e.  V )
13123expa 1208 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  k  e.  K )  /\  X  e.  V
)  ->  ( k  .x.  X )  e.  V
)
1413an32s 813 . . . . 5  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  ( k  .x.  X )  e.  V
)
15 eleq1a 2524 . . . . 5  |-  ( ( k  .x.  X )  e.  V  ->  (
v  =  ( k 
.x.  X )  -> 
v  e.  V ) )
1614, 15syl 17 . . . 4  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  ( v  =  ( k  .x.  X )  ->  v  e.  V ) )
1716rexlimdva 2879 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  ->  v  e.  V ) )
1817abssdv 3503 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  C_  V )
19 eqid 2451 . . . . 5  |-  ( 0g
`  F )  =  ( 0g `  F
)
201, 3, 19lmod0cl 18117 . . . 4  |-  ( W  e.  LMod  ->  ( 0g
`  F )  e.  K )
2120adantr 467 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( 0g `  F )  e.  K )
22 nfcv 2592 . . . 4  |-  F/_ k
( 0g `  F
)
23 nfre1 2848 . . . . . 6  |-  F/ k E. k  e.  K  v  =  ( k  .x.  X )
2423nfab 2596 . . . . 5  |-  F/_ k { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }
25 nfcv 2592 . . . . 5  |-  F/_ k (/)
2624, 25nfne 2723 . . . 4  |-  F/ k { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  =/=  (/)
27 biidd 241 . . . 4  |-  ( k  =  ( 0g `  F )  ->  ( { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  =/=  (/)  <->  { v  |  E. k  e.  K  v  =  ( k  .x.  X
) }  =/=  (/) ) )
28 ovex 6318 . . . . . 6  |-  ( k 
.x.  X )  e. 
_V
2928elabrex 6148 . . . . 5  |-  ( k  e.  K  ->  (
k  .x.  X )  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )
30 ne0i 3737 . . . . 5  |-  ( ( k  .x.  X )  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X
) }  =/=  (/) )
3129, 30syl 17 . . . 4  |-  ( k  e.  K  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  =/=  (/) )
3222, 26, 27, 31vtoclgaf 3112 . . 3  |-  ( ( 0g `  F )  e.  K  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  =/=  (/) )
3321, 32syl 17 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  =/=  (/) )
34 vex 3048 . . . . . . . . . . 11  |-  a  e. 
_V
35 eqeq1 2455 . . . . . . . . . . . 12  |-  ( v  =  a  ->  (
v  =  ( k 
.x.  X )  <->  a  =  ( k  .x.  X
) ) )
3635rexbidv 2901 . . . . . . . . . . 11  |-  ( v  =  a  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  <->  E. k  e.  K  a  =  ( k  .x.  X
) ) )
3734, 36elab 3185 . . . . . . . . . 10  |-  ( a  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  a  =  ( k  .x.  X
) )
38 oveq1 6297 . . . . . . . . . . . 12  |-  ( k  =  y  ->  (
k  .x.  X )  =  ( y  .x.  X ) )
3938eqeq2d 2461 . . . . . . . . . . 11  |-  ( k  =  y  ->  (
a  =  ( k 
.x.  X )  <->  a  =  ( y  .x.  X
) ) )
4039cbvrexv 3020 . . . . . . . . . 10  |-  ( E. k  e.  K  a  =  ( k  .x.  X )  <->  E. y  e.  K  a  =  ( y  .x.  X
) )
4137, 40bitri 253 . . . . . . . . 9  |-  ( a  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. y  e.  K  a  =  ( y  .x.  X
) )
42 vex 3048 . . . . . . . . . . 11  |-  b  e. 
_V
43 eqeq1 2455 . . . . . . . . . . . 12  |-  ( v  =  b  ->  (
v  =  ( k 
.x.  X )  <->  b  =  ( k  .x.  X
) ) )
4443rexbidv 2901 . . . . . . . . . . 11  |-  ( v  =  b  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  <->  E. k  e.  K  b  =  ( k  .x.  X
) ) )
4542, 44elab 3185 . . . . . . . . . 10  |-  ( b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  b  =  ( k  .x.  X
) )
46 oveq1 6297 . . . . . . . . . . . 12  |-  ( k  =  z  ->  (
k  .x.  X )  =  ( z  .x.  X ) )
4746eqeq2d 2461 . . . . . . . . . . 11  |-  ( k  =  z  ->  (
b  =  ( k 
.x.  X )  <->  b  =  ( z  .x.  X
) ) )
4847cbvrexv 3020 . . . . . . . . . 10  |-  ( E. k  e.  K  b  =  ( k  .x.  X )  <->  E. z  e.  K  b  =  ( z  .x.  X
) )
4945, 48bitri 253 . . . . . . . . 9  |-  ( b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. z  e.  K  b  =  ( z  .x.  X
) )
5041, 49anbi12i 703 . . . . . . . 8  |-  ( ( a  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  /\  b  e. 
{ v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )  <-> 
( E. y  e.  K  a  =  ( y  .x.  X )  /\  E. z  e.  K  b  =  ( z  .x.  X ) ) )
51 reeanv 2958 . . . . . . . 8  |-  ( E. y  e.  K  E. z  e.  K  (
a  =  ( y 
.x.  X )  /\  b  =  ( z  .x.  X ) )  <->  ( E. y  e.  K  a  =  ( y  .x.  X )  /\  E. z  e.  K  b  =  ( z  .x.  X ) ) )
5250, 51bitr4i 256 . . . . . . 7  |-  ( ( a  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  /\  b  e. 
{ v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )  <->  E. y  e.  K  E. z  e.  K  ( a  =  ( y  .x.  X )  /\  b  =  ( z  .x.  X ) ) )
53 simpll 760 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  ->  W  e.  LMod )
54 simprr 766 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  ->  x  e.  K )
55 simprll 772 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
y  e.  K )
56 eqid 2451 . . . . . . . . . . . . . . 15  |-  ( .r
`  F )  =  ( .r `  F
)
571, 3, 56lmodmcl 18103 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LMod  /\  x  e.  K  /\  y  e.  K )  ->  (
x ( .r `  F ) y )  e.  K )
5853, 54, 55, 57syl3anc 1268 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( x ( .r
`  F ) y )  e.  K )
59 simprlr 773 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
z  e.  K )
60 eqid 2451 . . . . . . . . . . . . . 14  |-  ( +g  `  F )  =  ( +g  `  F )
611, 3, 60lmodacl 18102 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  (
x ( .r `  F ) y )  e.  K  /\  z  e.  K )  ->  (
( x ( .r
`  F ) y ) ( +g  `  F
) z )  e.  K )
6253, 58, 59, 61syl3anc 1268 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( x ( .r `  F ) y ) ( +g  `  F ) z )  e.  K )
63 simplr 762 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  ->  X  e.  V )
64 eqid 2451 . . . . . . . . . . . . . . 15  |-  ( +g  `  W )  =  ( +g  `  W )
655, 64, 1, 8, 3, 60lmodvsdir 18115 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LMod  /\  (
( x ( .r
`  F ) y )  e.  K  /\  z  e.  K  /\  X  e.  V )
)  ->  ( (
( x ( .r
`  F ) y ) ( +g  `  F
) z )  .x.  X )  =  ( ( ( x ( .r `  F ) y )  .x.  X
) ( +g  `  W
) ( z  .x.  X ) ) )
6653, 58, 59, 63, 65syl13anc 1270 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( ( x ( .r `  F
) y ) ( +g  `  F ) z )  .x.  X
)  =  ( ( ( x ( .r
`  F ) y )  .x.  X ) ( +g  `  W
) ( z  .x.  X ) ) )
675, 1, 8, 3, 56lmodvsass 18116 . . . . . . . . . . . . . . 15  |-  ( ( W  e.  LMod  /\  (
x  e.  K  /\  y  e.  K  /\  X  e.  V )
)  ->  ( (
x ( .r `  F ) y ) 
.x.  X )  =  ( x  .x.  (
y  .x.  X )
) )
6853, 54, 55, 63, 67syl13anc 1270 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( x ( .r `  F ) y )  .x.  X
)  =  ( x 
.x.  ( y  .x.  X ) ) )
6968oveq1d 6305 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( ( x ( .r `  F
) y )  .x.  X ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( ( x 
.x.  ( y  .x.  X ) ) ( +g  `  W ) ( z  .x.  X
) ) )
7066, 69eqtr2d 2486 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( x  .x.  ( y  .x.  X
) ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( ( ( x ( .r `  F ) y ) ( +g  `  F
) z )  .x.  X ) )
71 oveq1 6297 . . . . . . . . . . . . . 14  |-  ( k  =  ( ( x ( .r `  F
) y ) ( +g  `  F ) z )  ->  (
k  .x.  X )  =  ( ( ( x ( .r `  F ) y ) ( +g  `  F
) z )  .x.  X ) )
7271eqeq2d 2461 . . . . . . . . . . . . 13  |-  ( k  =  ( ( x ( .r `  F
) y ) ( +g  `  F ) z )  ->  (
( ( x  .x.  ( y  .x.  X
) ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( k  .x.  X )  <->  ( (
x  .x.  ( y  .x.  X ) ) ( +g  `  W ) ( z  .x.  X
) )  =  ( ( ( x ( .r `  F ) y ) ( +g  `  F ) z ) 
.x.  X ) ) )
7372rspcev 3150 . . . . . . . . . . . 12  |-  ( ( ( ( x ( .r `  F ) y ) ( +g  `  F ) z )  e.  K  /\  (
( x  .x.  (
y  .x.  X )
) ( +g  `  W
) ( z  .x.  X ) )  =  ( ( ( x ( .r `  F
) y ) ( +g  `  F ) z )  .x.  X
) )  ->  E. k  e.  K  ( (
x  .x.  ( y  .x.  X ) ) ( +g  `  W ) ( z  .x.  X
) )  =  ( k  .x.  X ) )
7462, 70, 73syl2anc 667 . . . . . . . . . . 11  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  ->  E. k  e.  K  ( ( x  .x.  ( y  .x.  X
) ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( k  .x.  X ) )
75 oveq2 6298 . . . . . . . . . . . . . 14  |-  ( a  =  ( y  .x.  X )  ->  (
x  .x.  a )  =  ( x  .x.  ( y  .x.  X
) ) )
76 oveq12 6299 . . . . . . . . . . . . . 14  |-  ( ( ( x  .x.  a
)  =  ( x 
.x.  ( y  .x.  X ) )  /\  b  =  ( z  .x.  X ) )  -> 
( ( x  .x.  a ) ( +g  `  W ) b )  =  ( ( x 
.x.  ( y  .x.  X ) ) ( +g  `  W ) ( z  .x.  X
) ) )
7775, 76sylan 474 . . . . . . . . . . . . 13  |-  ( ( a  =  ( y 
.x.  X )  /\  b  =  ( z  .x.  X ) )  -> 
( ( x  .x.  a ) ( +g  `  W ) b )  =  ( ( x 
.x.  ( y  .x.  X ) ) ( +g  `  W ) ( z  .x.  X
) ) )
7877eqeq1d 2453 . . . . . . . . . . . 12  |-  ( ( a  =  ( y 
.x.  X )  /\  b  =  ( z  .x.  X ) )  -> 
( ( ( x 
.x.  a ) ( +g  `  W ) b )  =  ( k  .x.  X )  <-> 
( ( x  .x.  ( y  .x.  X
) ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( k  .x.  X ) ) )
7978rexbidv 2901 . . . . . . . . . . 11  |-  ( ( a  =  ( y 
.x.  X )  /\  b  =  ( z  .x.  X ) )  -> 
( E. k  e.  K  ( ( x 
.x.  a ) ( +g  `  W ) b )  =  ( k  .x.  X )  <->  E. k  e.  K  ( ( x  .x.  ( y  .x.  X
) ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( k  .x.  X ) ) )
8074, 79syl5ibrcom 226 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( a  =  ( y  .x.  X
)  /\  b  =  ( z  .x.  X
) )  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) )
8180expr 620 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( y  e.  K  /\  z  e.  K ) )  -> 
( x  e.  K  ->  ( ( a  =  ( y  .x.  X
)  /\  b  =  ( z  .x.  X
) )  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) ) )
8281com23 81 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( y  e.  K  /\  z  e.  K ) )  -> 
( ( a  =  ( y  .x.  X
)  /\  b  =  ( z  .x.  X
) )  ->  (
x  e.  K  ->  E. k  e.  K  ( ( x  .x.  a ) ( +g  `  W ) b )  =  ( k  .x.  X ) ) ) )
8382rexlimdvva 2886 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( E. y  e.  K  E. z  e.  K  ( a  =  ( y  .x.  X )  /\  b  =  ( z  .x.  X ) )  ->  ( x  e.  K  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) ) )
8452, 83syl5bi 221 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( a  e.  {
v  |  E. k  e.  K  v  =  ( k  .x.  X
) }  /\  b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )  ->  ( x  e.  K  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) ) )
8584expcomd 440 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  ->  ( a  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  ->  ( x  e.  K  ->  E. k  e.  K  ( ( x  .x.  a ) ( +g  `  W ) b )  =  ( k  .x.  X ) ) ) ) )
8685com24 90 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
x  e.  K  -> 
( a  e.  {
v  |  E. k  e.  K  v  =  ( k  .x.  X
) }  ->  (
b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) ) ) )
87863imp2 1224 . . 3  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( x  e.  K  /\  a  e. 
{ v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  /\  b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } ) )  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) )
88 ovex 6318 . . . 4  |-  ( ( x  .x.  a ) ( +g  `  W
) b )  e. 
_V
89 eqeq1 2455 . . . . 5  |-  ( v  =  ( ( x 
.x.  a ) ( +g  `  W ) b )  ->  (
v  =  ( k 
.x.  X )  <->  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) )
9089rexbidv 2901 . . . 4  |-  ( v  =  ( ( x 
.x.  a ) ( +g  `  W ) b )  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  <->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) )
9188, 90elab 3185 . . 3  |-  ( ( ( x  .x.  a
) ( +g  `  W
) b )  e. 
{ v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) )
9287, 91sylibr 216 . 2  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( x  e.  K  /\  a  e. 
{ v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  /\  b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } ) )  ->  ( (
x  .x.  a )
( +g  `  W ) b )  e.  {
v  |  E. k  e.  K  v  =  ( k  .x.  X
) } )
932, 4, 6, 7, 9, 11, 18, 33, 92islssd 18159 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887   {cab 2437    =/= wne 2622   E.wrex 2738   (/)c0 3731   ` cfv 5582  (class class class)co 6290   Basecbs 15121   +g cplusg 15190   .rcmulr 15191  Scalarcsca 15193   .scvsca 15194   0gc0g 15338   LModclmod 18091   LSubSpclss 18155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-er 7363  df-en 7570  df-dom 7571  df-sdom 7572  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-nn 10610  df-2 10668  df-ndx 15124  df-slot 15125  df-base 15126  df-sets 15127  df-plusg 15203  df-0g 15340  df-mgm 16488  df-sgrp 16527  df-mnd 16537  df-grp 16673  df-mgp 17724  df-ring 17782  df-lmod 18093  df-lss 18156
This theorem is referenced by:  lspsn  18225
  Copyright terms: Public domain W3C validator