MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lss1d Unicode version

Theorem lss1d 15994
Description: One-dimensional subspace (or zero-dimensional if  X is the zero vector). (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lss1d.v  |-  V  =  ( Base `  W
)
lss1d.f  |-  F  =  (Scalar `  W )
lss1d.t  |-  .x.  =  ( .s `  W )
lss1d.k  |-  K  =  ( Base `  F
)
lss1d.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lss1d  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  e.  S )
Distinct variable groups:    v, k, K    .x. , k, v    k, V, v    k, F    k, W, v    k, X, v
Allowed substitution hints:    S( v, k)    F( v)

Proof of Theorem lss1d
Dummy variables  a 
b  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lss1d.f . . 3  |-  F  =  (Scalar `  W )
21a1i 11 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  F  =  (Scalar `  W )
)
3 lss1d.k . . 3  |-  K  =  ( Base `  F
)
43a1i 11 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  K  =  ( Base `  F
) )
5 lss1d.v . . 3  |-  V  =  ( Base `  W
)
65a1i 11 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  V  =  ( Base `  W
) )
7 eqidd 2405 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( +g  `  W )  =  ( +g  `  W
) )
8 lss1d.t . . 3  |-  .x.  =  ( .s `  W )
98a1i 11 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  .x.  =  ( .s `  W ) )
10 lss1d.s . . 3  |-  S  =  ( LSubSp `  W )
1110a1i 11 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  S  =  ( LSubSp `  W
) )
125, 1, 8, 3lmodvscl 15922 . . . . . . 7  |-  ( ( W  e.  LMod  /\  k  e.  K  /\  X  e.  V )  ->  (
k  .x.  X )  e.  V )
13123expa 1153 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  k  e.  K )  /\  X  e.  V
)  ->  ( k  .x.  X )  e.  V
)
1413an32s 780 . . . . 5  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  ( k  .x.  X )  e.  V
)
15 eleq1a 2473 . . . . 5  |-  ( ( k  .x.  X )  e.  V  ->  (
v  =  ( k 
.x.  X )  -> 
v  e.  V ) )
1614, 15syl 16 . . . 4  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  ( v  =  ( k  .x.  X )  ->  v  e.  V ) )
1716rexlimdva 2790 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  ->  v  e.  V ) )
1817abssdv 3377 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  C_  V )
19 eqid 2404 . . . . 5  |-  ( 0g
`  F )  =  ( 0g `  F
)
201, 3, 19lmod0cl 15931 . . . 4  |-  ( W  e.  LMod  ->  ( 0g
`  F )  e.  K )
2120adantr 452 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( 0g `  F )  e.  K )
22 nfcv 2540 . . . 4  |-  F/_ k
( 0g `  F
)
23 nfre1 2722 . . . . . 6  |-  F/ k E. k  e.  K  v  =  ( k  .x.  X )
2423nfab 2544 . . . . 5  |-  F/_ k { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }
25 nfcv 2540 . . . . 5  |-  F/_ k (/)
2624, 25nfne 2658 . . . 4  |-  F/ k { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  =/=  (/)
27 biidd 229 . . . 4  |-  ( k  =  ( 0g `  F )  ->  ( { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  =/=  (/)  <->  { v  |  E. k  e.  K  v  =  ( k  .x.  X
) }  =/=  (/) ) )
28 ovex 6065 . . . . . 6  |-  ( k 
.x.  X )  e. 
_V
2928elabrex 5944 . . . . 5  |-  ( k  e.  K  ->  (
k  .x.  X )  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )
30 ne0i 3594 . . . . 5  |-  ( ( k  .x.  X )  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X
) }  =/=  (/) )
3129, 30syl 16 . . . 4  |-  ( k  e.  K  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  =/=  (/) )
3222, 26, 27, 31vtoclgaf 2976 . . 3  |-  ( ( 0g `  F )  e.  K  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  =/=  (/) )
3321, 32syl 16 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  =/=  (/) )
34 vex 2919 . . . . . . . . . . 11  |-  a  e. 
_V
35 eqeq1 2410 . . . . . . . . . . . 12  |-  ( v  =  a  ->  (
v  =  ( k 
.x.  X )  <->  a  =  ( k  .x.  X
) ) )
3635rexbidv 2687 . . . . . . . . . . 11  |-  ( v  =  a  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  <->  E. k  e.  K  a  =  ( k  .x.  X
) ) )
3734, 36elab 3042 . . . . . . . . . 10  |-  ( a  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  a  =  ( k  .x.  X
) )
38 oveq1 6047 . . . . . . . . . . . 12  |-  ( k  =  y  ->  (
k  .x.  X )  =  ( y  .x.  X ) )
3938eqeq2d 2415 . . . . . . . . . . 11  |-  ( k  =  y  ->  (
a  =  ( k 
.x.  X )  <->  a  =  ( y  .x.  X
) ) )
4039cbvrexv 2893 . . . . . . . . . 10  |-  ( E. k  e.  K  a  =  ( k  .x.  X )  <->  E. y  e.  K  a  =  ( y  .x.  X
) )
4137, 40bitri 241 . . . . . . . . 9  |-  ( a  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. y  e.  K  a  =  ( y  .x.  X
) )
42 vex 2919 . . . . . . . . . . 11  |-  b  e. 
_V
43 eqeq1 2410 . . . . . . . . . . . 12  |-  ( v  =  b  ->  (
v  =  ( k 
.x.  X )  <->  b  =  ( k  .x.  X
) ) )
4443rexbidv 2687 . . . . . . . . . . 11  |-  ( v  =  b  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  <->  E. k  e.  K  b  =  ( k  .x.  X
) ) )
4542, 44elab 3042 . . . . . . . . . 10  |-  ( b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  b  =  ( k  .x.  X
) )
46 oveq1 6047 . . . . . . . . . . . 12  |-  ( k  =  z  ->  (
k  .x.  X )  =  ( z  .x.  X ) )
4746eqeq2d 2415 . . . . . . . . . . 11  |-  ( k  =  z  ->  (
b  =  ( k 
.x.  X )  <->  b  =  ( z  .x.  X
) ) )
4847cbvrexv 2893 . . . . . . . . . 10  |-  ( E. k  e.  K  b  =  ( k  .x.  X )  <->  E. z  e.  K  b  =  ( z  .x.  X
) )
4945, 48bitri 241 . . . . . . . . 9  |-  ( b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. z  e.  K  b  =  ( z  .x.  X
) )
5041, 49anbi12i 679 . . . . . . . 8  |-  ( ( a  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  /\  b  e. 
{ v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )  <-> 
( E. y  e.  K  a  =  ( y  .x.  X )  /\  E. z  e.  K  b  =  ( z  .x.  X ) ) )
51 reeanv 2835 . . . . . . . 8  |-  ( E. y  e.  K  E. z  e.  K  (
a  =  ( y 
.x.  X )  /\  b  =  ( z  .x.  X ) )  <->  ( E. y  e.  K  a  =  ( y  .x.  X )  /\  E. z  e.  K  b  =  ( z  .x.  X ) ) )
5250, 51bitr4i 244 . . . . . . 7  |-  ( ( a  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  /\  b  e. 
{ v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )  <->  E. y  e.  K  E. z  e.  K  ( a  =  ( y  .x.  X )  /\  b  =  ( z  .x.  X ) ) )
53 simpll 731 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  ->  W  e.  LMod )
54 simprr 734 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  ->  x  e.  K )
55 simprll 739 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
y  e.  K )
56 eqid 2404 . . . . . . . . . . . . . . 15  |-  ( .r
`  F )  =  ( .r `  F
)
571, 3, 56lmodmcl 15917 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LMod  /\  x  e.  K  /\  y  e.  K )  ->  (
x ( .r `  F ) y )  e.  K )
5853, 54, 55, 57syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( x ( .r
`  F ) y )  e.  K )
59 simprlr 740 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
z  e.  K )
60 eqid 2404 . . . . . . . . . . . . . 14  |-  ( +g  `  F )  =  ( +g  `  F )
611, 3, 60lmodacl 15916 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  (
x ( .r `  F ) y )  e.  K  /\  z  e.  K )  ->  (
( x ( .r
`  F ) y ) ( +g  `  F
) z )  e.  K )
6253, 58, 59, 61syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( x ( .r `  F ) y ) ( +g  `  F ) z )  e.  K )
63 simplr 732 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  ->  X  e.  V )
64 eqid 2404 . . . . . . . . . . . . . . 15  |-  ( +g  `  W )  =  ( +g  `  W )
655, 64, 1, 8, 3, 60lmodvsdir 15929 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LMod  /\  (
( x ( .r
`  F ) y )  e.  K  /\  z  e.  K  /\  X  e.  V )
)  ->  ( (
( x ( .r
`  F ) y ) ( +g  `  F
) z )  .x.  X )  =  ( ( ( x ( .r `  F ) y )  .x.  X
) ( +g  `  W
) ( z  .x.  X ) ) )
6653, 58, 59, 63, 65syl13anc 1186 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( ( x ( .r `  F
) y ) ( +g  `  F ) z )  .x.  X
)  =  ( ( ( x ( .r
`  F ) y )  .x.  X ) ( +g  `  W
) ( z  .x.  X ) ) )
675, 1, 8, 3, 56lmodvsass 15930 . . . . . . . . . . . . . . 15  |-  ( ( W  e.  LMod  /\  (
x  e.  K  /\  y  e.  K  /\  X  e.  V )
)  ->  ( (
x ( .r `  F ) y ) 
.x.  X )  =  ( x  .x.  (
y  .x.  X )
) )
6853, 54, 55, 63, 67syl13anc 1186 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( x ( .r `  F ) y )  .x.  X
)  =  ( x 
.x.  ( y  .x.  X ) ) )
6968oveq1d 6055 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( ( x ( .r `  F
) y )  .x.  X ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( ( x 
.x.  ( y  .x.  X ) ) ( +g  `  W ) ( z  .x.  X
) ) )
7066, 69eqtr2d 2437 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( x  .x.  ( y  .x.  X
) ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( ( ( x ( .r `  F ) y ) ( +g  `  F
) z )  .x.  X ) )
71 oveq1 6047 . . . . . . . . . . . . . 14  |-  ( k  =  ( ( x ( .r `  F
) y ) ( +g  `  F ) z )  ->  (
k  .x.  X )  =  ( ( ( x ( .r `  F ) y ) ( +g  `  F
) z )  .x.  X ) )
7271eqeq2d 2415 . . . . . . . . . . . . 13  |-  ( k  =  ( ( x ( .r `  F
) y ) ( +g  `  F ) z )  ->  (
( ( x  .x.  ( y  .x.  X
) ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( k  .x.  X )  <->  ( (
x  .x.  ( y  .x.  X ) ) ( +g  `  W ) ( z  .x.  X
) )  =  ( ( ( x ( .r `  F ) y ) ( +g  `  F ) z ) 
.x.  X ) ) )
7372rspcev 3012 . . . . . . . . . . . 12  |-  ( ( ( ( x ( .r `  F ) y ) ( +g  `  F ) z )  e.  K  /\  (
( x  .x.  (
y  .x.  X )
) ( +g  `  W
) ( z  .x.  X ) )  =  ( ( ( x ( .r `  F
) y ) ( +g  `  F ) z )  .x.  X
) )  ->  E. k  e.  K  ( (
x  .x.  ( y  .x.  X ) ) ( +g  `  W ) ( z  .x.  X
) )  =  ( k  .x.  X ) )
7462, 70, 73syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  ->  E. k  e.  K  ( ( x  .x.  ( y  .x.  X
) ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( k  .x.  X ) )
75 oveq2 6048 . . . . . . . . . . . . . 14  |-  ( a  =  ( y  .x.  X )  ->  (
x  .x.  a )  =  ( x  .x.  ( y  .x.  X
) ) )
76 oveq12 6049 . . . . . . . . . . . . . 14  |-  ( ( ( x  .x.  a
)  =  ( x 
.x.  ( y  .x.  X ) )  /\  b  =  ( z  .x.  X ) )  -> 
( ( x  .x.  a ) ( +g  `  W ) b )  =  ( ( x 
.x.  ( y  .x.  X ) ) ( +g  `  W ) ( z  .x.  X
) ) )
7775, 76sylan 458 . . . . . . . . . . . . 13  |-  ( ( a  =  ( y 
.x.  X )  /\  b  =  ( z  .x.  X ) )  -> 
( ( x  .x.  a ) ( +g  `  W ) b )  =  ( ( x 
.x.  ( y  .x.  X ) ) ( +g  `  W ) ( z  .x.  X
) ) )
7877eqeq1d 2412 . . . . . . . . . . . 12  |-  ( ( a  =  ( y 
.x.  X )  /\  b  =  ( z  .x.  X ) )  -> 
( ( ( x 
.x.  a ) ( +g  `  W ) b )  =  ( k  .x.  X )  <-> 
( ( x  .x.  ( y  .x.  X
) ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( k  .x.  X ) ) )
7978rexbidv 2687 . . . . . . . . . . 11  |-  ( ( a  =  ( y 
.x.  X )  /\  b  =  ( z  .x.  X ) )  -> 
( E. k  e.  K  ( ( x 
.x.  a ) ( +g  `  W ) b )  =  ( k  .x.  X )  <->  E. k  e.  K  ( ( x  .x.  ( y  .x.  X
) ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( k  .x.  X ) ) )
8074, 79syl5ibrcom 214 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( a  =  ( y  .x.  X
)  /\  b  =  ( z  .x.  X
) )  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) )
8180expr 599 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( y  e.  K  /\  z  e.  K ) )  -> 
( x  e.  K  ->  ( ( a  =  ( y  .x.  X
)  /\  b  =  ( z  .x.  X
) )  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) ) )
8281com23 74 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( y  e.  K  /\  z  e.  K ) )  -> 
( ( a  =  ( y  .x.  X
)  /\  b  =  ( z  .x.  X
) )  ->  (
x  e.  K  ->  E. k  e.  K  ( ( x  .x.  a ) ( +g  `  W ) b )  =  ( k  .x.  X ) ) ) )
8382rexlimdvva 2797 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( E. y  e.  K  E. z  e.  K  ( a  =  ( y  .x.  X )  /\  b  =  ( z  .x.  X ) )  ->  ( x  e.  K  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) ) )
8452, 83syl5bi 209 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( a  e.  {
v  |  E. k  e.  K  v  =  ( k  .x.  X
) }  /\  b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )  ->  ( x  e.  K  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) ) )
8584exp3acom23 1378 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  ->  ( a  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  ->  ( x  e.  K  ->  E. k  e.  K  ( ( x  .x.  a ) ( +g  `  W ) b )  =  ( k  .x.  X ) ) ) ) )
8685com24 83 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
x  e.  K  -> 
( a  e.  {
v  |  E. k  e.  K  v  =  ( k  .x.  X
) }  ->  (
b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) ) ) )
87863imp2 1168 . . 3  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( x  e.  K  /\  a  e. 
{ v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  /\  b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } ) )  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) )
88 ovex 6065 . . . 4  |-  ( ( x  .x.  a ) ( +g  `  W
) b )  e. 
_V
89 eqeq1 2410 . . . . 5  |-  ( v  =  ( ( x 
.x.  a ) ( +g  `  W ) b )  ->  (
v  =  ( k 
.x.  X )  <->  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) )
9089rexbidv 2687 . . . 4  |-  ( v  =  ( ( x 
.x.  a ) ( +g  `  W ) b )  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  <->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) )
9188, 90elab 3042 . . 3  |-  ( ( ( x  .x.  a
) ( +g  `  W
) b )  e. 
{ v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) )
9287, 91sylibr 204 . 2  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( x  e.  K  /\  a  e. 
{ v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  /\  b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } ) )  ->  ( (
x  .x.  a )
( +g  `  W ) b )  e.  {
v  |  E. k  e.  K  v  =  ( k  .x.  X
) } )
932, 4, 6, 7, 9, 11, 18, 33, 92islssd 15967 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   {cab 2390    =/= wne 2567   E.wrex 2667   (/)c0 3588   ` cfv 5413  (class class class)co 6040   Basecbs 13424   +g cplusg 13484   .rcmulr 13485  Scalarcsca 13487   .scvsca 13488   0gc0g 13678   LModclmod 15905   LSubSpclss 15963
This theorem is referenced by:  lspsn  16033
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-plusg 13497  df-0g 13682  df-mnd 14645  df-grp 14767  df-mgp 15604  df-rng 15618  df-lmod 15907  df-lss 15964
  Copyright terms: Public domain W3C validator