MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lss1d Structured version   Unicode version

Theorem lss1d 18174
Description: One-dimensional subspace (or zero-dimensional if  X is the zero vector). (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lss1d.v  |-  V  =  ( Base `  W
)
lss1d.f  |-  F  =  (Scalar `  W )
lss1d.t  |-  .x.  =  ( .s `  W )
lss1d.k  |-  K  =  ( Base `  F
)
lss1d.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lss1d  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  e.  S )
Distinct variable groups:    v, k, K    .x. , k, v    k, V, v    k, F    k, W, v    k, X, v
Allowed substitution hints:    S( v, k)    F( v)

Proof of Theorem lss1d
Dummy variables  a 
b  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lss1d.f . . 3  |-  F  =  (Scalar `  W )
21a1i 11 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  F  =  (Scalar `  W )
)
3 lss1d.k . . 3  |-  K  =  ( Base `  F
)
43a1i 11 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  K  =  ( Base `  F
) )
5 lss1d.v . . 3  |-  V  =  ( Base `  W
)
65a1i 11 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  V  =  ( Base `  W
) )
7 eqidd 2423 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( +g  `  W )  =  ( +g  `  W
) )
8 lss1d.t . . 3  |-  .x.  =  ( .s `  W )
98a1i 11 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  .x.  =  ( .s `  W ) )
10 lss1d.s . . 3  |-  S  =  ( LSubSp `  W )
1110a1i 11 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  S  =  ( LSubSp `  W
) )
125, 1, 8, 3lmodvscl 18096 . . . . . . 7  |-  ( ( W  e.  LMod  /\  k  e.  K  /\  X  e.  V )  ->  (
k  .x.  X )  e.  V )
13123expa 1205 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  k  e.  K )  /\  X  e.  V
)  ->  ( k  .x.  X )  e.  V
)
1413an32s 811 . . . . 5  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  ( k  .x.  X )  e.  V
)
15 eleq1a 2505 . . . . 5  |-  ( ( k  .x.  X )  e.  V  ->  (
v  =  ( k 
.x.  X )  -> 
v  e.  V ) )
1614, 15syl 17 . . . 4  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  ( v  =  ( k  .x.  X )  ->  v  e.  V ) )
1716rexlimdva 2917 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  ->  v  e.  V ) )
1817abssdv 3535 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  C_  V )
19 eqid 2422 . . . . 5  |-  ( 0g
`  F )  =  ( 0g `  F
)
201, 3, 19lmod0cl 18105 . . . 4  |-  ( W  e.  LMod  ->  ( 0g
`  F )  e.  K )
2120adantr 466 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( 0g `  F )  e.  K )
22 nfcv 2584 . . . 4  |-  F/_ k
( 0g `  F
)
23 nfre1 2886 . . . . . 6  |-  F/ k E. k  e.  K  v  =  ( k  .x.  X )
2423nfab 2588 . . . . 5  |-  F/_ k { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }
25 nfcv 2584 . . . . 5  |-  F/_ k (/)
2624, 25nfne 2756 . . . 4  |-  F/ k { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  =/=  (/)
27 biidd 240 . . . 4  |-  ( k  =  ( 0g `  F )  ->  ( { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  =/=  (/)  <->  { v  |  E. k  e.  K  v  =  ( k  .x.  X
) }  =/=  (/) ) )
28 ovex 6330 . . . . . 6  |-  ( k 
.x.  X )  e. 
_V
2928elabrex 6160 . . . . 5  |-  ( k  e.  K  ->  (
k  .x.  X )  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )
30 ne0i 3767 . . . . 5  |-  ( ( k  .x.  X )  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X
) }  =/=  (/) )
3129, 30syl 17 . . . 4  |-  ( k  e.  K  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  =/=  (/) )
3222, 26, 27, 31vtoclgaf 3144 . . 3  |-  ( ( 0g `  F )  e.  K  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  =/=  (/) )
3321, 32syl 17 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  =/=  (/) )
34 vex 3084 . . . . . . . . . . 11  |-  a  e. 
_V
35 eqeq1 2426 . . . . . . . . . . . 12  |-  ( v  =  a  ->  (
v  =  ( k 
.x.  X )  <->  a  =  ( k  .x.  X
) ) )
3635rexbidv 2939 . . . . . . . . . . 11  |-  ( v  =  a  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  <->  E. k  e.  K  a  =  ( k  .x.  X
) ) )
3734, 36elab 3218 . . . . . . . . . 10  |-  ( a  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  a  =  ( k  .x.  X
) )
38 oveq1 6309 . . . . . . . . . . . 12  |-  ( k  =  y  ->  (
k  .x.  X )  =  ( y  .x.  X ) )
3938eqeq2d 2436 . . . . . . . . . . 11  |-  ( k  =  y  ->  (
a  =  ( k 
.x.  X )  <->  a  =  ( y  .x.  X
) ) )
4039cbvrexv 3056 . . . . . . . . . 10  |-  ( E. k  e.  K  a  =  ( k  .x.  X )  <->  E. y  e.  K  a  =  ( y  .x.  X
) )
4137, 40bitri 252 . . . . . . . . 9  |-  ( a  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. y  e.  K  a  =  ( y  .x.  X
) )
42 vex 3084 . . . . . . . . . . 11  |-  b  e. 
_V
43 eqeq1 2426 . . . . . . . . . . . 12  |-  ( v  =  b  ->  (
v  =  ( k 
.x.  X )  <->  b  =  ( k  .x.  X
) ) )
4443rexbidv 2939 . . . . . . . . . . 11  |-  ( v  =  b  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  <->  E. k  e.  K  b  =  ( k  .x.  X
) ) )
4542, 44elab 3218 . . . . . . . . . 10  |-  ( b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  b  =  ( k  .x.  X
) )
46 oveq1 6309 . . . . . . . . . . . 12  |-  ( k  =  z  ->  (
k  .x.  X )  =  ( z  .x.  X ) )
4746eqeq2d 2436 . . . . . . . . . . 11  |-  ( k  =  z  ->  (
b  =  ( k 
.x.  X )  <->  b  =  ( z  .x.  X
) ) )
4847cbvrexv 3056 . . . . . . . . . 10  |-  ( E. k  e.  K  b  =  ( k  .x.  X )  <->  E. z  e.  K  b  =  ( z  .x.  X
) )
4945, 48bitri 252 . . . . . . . . 9  |-  ( b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. z  e.  K  b  =  ( z  .x.  X
) )
5041, 49anbi12i 701 . . . . . . . 8  |-  ( ( a  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  /\  b  e. 
{ v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )  <-> 
( E. y  e.  K  a  =  ( y  .x.  X )  /\  E. z  e.  K  b  =  ( z  .x.  X ) ) )
51 reeanv 2996 . . . . . . . 8  |-  ( E. y  e.  K  E. z  e.  K  (
a  =  ( y 
.x.  X )  /\  b  =  ( z  .x.  X ) )  <->  ( E. y  e.  K  a  =  ( y  .x.  X )  /\  E. z  e.  K  b  =  ( z  .x.  X ) ) )
5250, 51bitr4i 255 . . . . . . 7  |-  ( ( a  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  /\  b  e. 
{ v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )  <->  E. y  e.  K  E. z  e.  K  ( a  =  ( y  .x.  X )  /\  b  =  ( z  .x.  X ) ) )
53 simpll 758 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  ->  W  e.  LMod )
54 simprr 764 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  ->  x  e.  K )
55 simprll 770 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
y  e.  K )
56 eqid 2422 . . . . . . . . . . . . . . 15  |-  ( .r
`  F )  =  ( .r `  F
)
571, 3, 56lmodmcl 18091 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LMod  /\  x  e.  K  /\  y  e.  K )  ->  (
x ( .r `  F ) y )  e.  K )
5853, 54, 55, 57syl3anc 1264 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( x ( .r
`  F ) y )  e.  K )
59 simprlr 771 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
z  e.  K )
60 eqid 2422 . . . . . . . . . . . . . 14  |-  ( +g  `  F )  =  ( +g  `  F )
611, 3, 60lmodacl 18090 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  (
x ( .r `  F ) y )  e.  K  /\  z  e.  K )  ->  (
( x ( .r
`  F ) y ) ( +g  `  F
) z )  e.  K )
6253, 58, 59, 61syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( x ( .r `  F ) y ) ( +g  `  F ) z )  e.  K )
63 simplr 760 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  ->  X  e.  V )
64 eqid 2422 . . . . . . . . . . . . . . 15  |-  ( +g  `  W )  =  ( +g  `  W )
655, 64, 1, 8, 3, 60lmodvsdir 18103 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LMod  /\  (
( x ( .r
`  F ) y )  e.  K  /\  z  e.  K  /\  X  e.  V )
)  ->  ( (
( x ( .r
`  F ) y ) ( +g  `  F
) z )  .x.  X )  =  ( ( ( x ( .r `  F ) y )  .x.  X
) ( +g  `  W
) ( z  .x.  X ) ) )
6653, 58, 59, 63, 65syl13anc 1266 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( ( x ( .r `  F
) y ) ( +g  `  F ) z )  .x.  X
)  =  ( ( ( x ( .r
`  F ) y )  .x.  X ) ( +g  `  W
) ( z  .x.  X ) ) )
675, 1, 8, 3, 56lmodvsass 18104 . . . . . . . . . . . . . . 15  |-  ( ( W  e.  LMod  /\  (
x  e.  K  /\  y  e.  K  /\  X  e.  V )
)  ->  ( (
x ( .r `  F ) y ) 
.x.  X )  =  ( x  .x.  (
y  .x.  X )
) )
6853, 54, 55, 63, 67syl13anc 1266 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( x ( .r `  F ) y )  .x.  X
)  =  ( x 
.x.  ( y  .x.  X ) ) )
6968oveq1d 6317 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( ( x ( .r `  F
) y )  .x.  X ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( ( x 
.x.  ( y  .x.  X ) ) ( +g  `  W ) ( z  .x.  X
) ) )
7066, 69eqtr2d 2464 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( x  .x.  ( y  .x.  X
) ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( ( ( x ( .r `  F ) y ) ( +g  `  F
) z )  .x.  X ) )
71 oveq1 6309 . . . . . . . . . . . . . 14  |-  ( k  =  ( ( x ( .r `  F
) y ) ( +g  `  F ) z )  ->  (
k  .x.  X )  =  ( ( ( x ( .r `  F ) y ) ( +g  `  F
) z )  .x.  X ) )
7271eqeq2d 2436 . . . . . . . . . . . . 13  |-  ( k  =  ( ( x ( .r `  F
) y ) ( +g  `  F ) z )  ->  (
( ( x  .x.  ( y  .x.  X
) ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( k  .x.  X )  <->  ( (
x  .x.  ( y  .x.  X ) ) ( +g  `  W ) ( z  .x.  X
) )  =  ( ( ( x ( .r `  F ) y ) ( +g  `  F ) z ) 
.x.  X ) ) )
7372rspcev 3182 . . . . . . . . . . . 12  |-  ( ( ( ( x ( .r `  F ) y ) ( +g  `  F ) z )  e.  K  /\  (
( x  .x.  (
y  .x.  X )
) ( +g  `  W
) ( z  .x.  X ) )  =  ( ( ( x ( .r `  F
) y ) ( +g  `  F ) z )  .x.  X
) )  ->  E. k  e.  K  ( (
x  .x.  ( y  .x.  X ) ) ( +g  `  W ) ( z  .x.  X
) )  =  ( k  .x.  X ) )
7462, 70, 73syl2anc 665 . . . . . . . . . . 11  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  ->  E. k  e.  K  ( ( x  .x.  ( y  .x.  X
) ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( k  .x.  X ) )
75 oveq2 6310 . . . . . . . . . . . . . 14  |-  ( a  =  ( y  .x.  X )  ->  (
x  .x.  a )  =  ( x  .x.  ( y  .x.  X
) ) )
76 oveq12 6311 . . . . . . . . . . . . . 14  |-  ( ( ( x  .x.  a
)  =  ( x 
.x.  ( y  .x.  X ) )  /\  b  =  ( z  .x.  X ) )  -> 
( ( x  .x.  a ) ( +g  `  W ) b )  =  ( ( x 
.x.  ( y  .x.  X ) ) ( +g  `  W ) ( z  .x.  X
) ) )
7775, 76sylan 473 . . . . . . . . . . . . 13  |-  ( ( a  =  ( y 
.x.  X )  /\  b  =  ( z  .x.  X ) )  -> 
( ( x  .x.  a ) ( +g  `  W ) b )  =  ( ( x 
.x.  ( y  .x.  X ) ) ( +g  `  W ) ( z  .x.  X
) ) )
7877eqeq1d 2424 . . . . . . . . . . . 12  |-  ( ( a  =  ( y 
.x.  X )  /\  b  =  ( z  .x.  X ) )  -> 
( ( ( x 
.x.  a ) ( +g  `  W ) b )  =  ( k  .x.  X )  <-> 
( ( x  .x.  ( y  .x.  X
) ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( k  .x.  X ) ) )
7978rexbidv 2939 . . . . . . . . . . 11  |-  ( ( a  =  ( y 
.x.  X )  /\  b  =  ( z  .x.  X ) )  -> 
( E. k  e.  K  ( ( x 
.x.  a ) ( +g  `  W ) b )  =  ( k  .x.  X )  <->  E. k  e.  K  ( ( x  .x.  ( y  .x.  X
) ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( k  .x.  X ) ) )
8074, 79syl5ibrcom 225 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( a  =  ( y  .x.  X
)  /\  b  =  ( z  .x.  X
) )  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) )
8180expr 618 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( y  e.  K  /\  z  e.  K ) )  -> 
( x  e.  K  ->  ( ( a  =  ( y  .x.  X
)  /\  b  =  ( z  .x.  X
) )  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) ) )
8281com23 81 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( y  e.  K  /\  z  e.  K ) )  -> 
( ( a  =  ( y  .x.  X
)  /\  b  =  ( z  .x.  X
) )  ->  (
x  e.  K  ->  E. k  e.  K  ( ( x  .x.  a ) ( +g  `  W ) b )  =  ( k  .x.  X ) ) ) )
8382rexlimdvva 2924 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( E. y  e.  K  E. z  e.  K  ( a  =  ( y  .x.  X )  /\  b  =  ( z  .x.  X ) )  ->  ( x  e.  K  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) ) )
8452, 83syl5bi 220 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( a  e.  {
v  |  E. k  e.  K  v  =  ( k  .x.  X
) }  /\  b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )  ->  ( x  e.  K  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) ) )
8584expcomd 439 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  ->  ( a  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  ->  ( x  e.  K  ->  E. k  e.  K  ( ( x  .x.  a ) ( +g  `  W ) b )  =  ( k  .x.  X ) ) ) ) )
8685com24 90 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
x  e.  K  -> 
( a  e.  {
v  |  E. k  e.  K  v  =  ( k  .x.  X
) }  ->  (
b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) ) ) )
87863imp2 1220 . . 3  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( x  e.  K  /\  a  e. 
{ v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  /\  b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } ) )  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) )
88 ovex 6330 . . . 4  |-  ( ( x  .x.  a ) ( +g  `  W
) b )  e. 
_V
89 eqeq1 2426 . . . . 5  |-  ( v  =  ( ( x 
.x.  a ) ( +g  `  W ) b )  ->  (
v  =  ( k 
.x.  X )  <->  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) )
9089rexbidv 2939 . . . 4  |-  ( v  =  ( ( x 
.x.  a ) ( +g  `  W ) b )  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  <->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) )
9188, 90elab 3218 . . 3  |-  ( ( ( x  .x.  a
) ( +g  `  W
) b )  e. 
{ v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) )
9287, 91sylibr 215 . 2  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( x  e.  K  /\  a  e. 
{ v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  /\  b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } ) )  ->  ( (
x  .x.  a )
( +g  `  W ) b )  e.  {
v  |  E. k  e.  K  v  =  ( k  .x.  X
) } )
932, 4, 6, 7, 9, 11, 18, 33, 92islssd 18147 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868   {cab 2407    =/= wne 2618   E.wrex 2776   (/)c0 3761   ` cfv 5598  (class class class)co 6302   Basecbs 15109   +g cplusg 15178   .rcmulr 15179  Scalarcsca 15181   .scvsca 15182   0gc0g 15326   LModclmod 18079   LSubSpclss 18143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-sep 4543  ax-nul 4552  ax-pow 4599  ax-pr 4657  ax-un 6594  ax-cnex 9596  ax-resscn 9597  ax-1cn 9598  ax-icn 9599  ax-addcl 9600  ax-addrcl 9601  ax-mulcl 9602  ax-mulrcl 9603  ax-mulcom 9604  ax-addass 9605  ax-mulass 9606  ax-distr 9607  ax-i2m1 9608  ax-1ne0 9609  ax-1rid 9610  ax-rnegex 9611  ax-rrecex 9612  ax-cnre 9613  ax-pre-lttri 9614  ax-pre-lttrn 9615  ax-pre-ltadd 9616  ax-pre-mulgt0 9617
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4761  df-id 4765  df-po 4771  df-so 4772  df-fr 4809  df-we 4811  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-res 4862  df-ima 4863  df-pred 5396  df-ord 5442  df-on 5443  df-lim 5444  df-suc 5445  df-iota 5562  df-fun 5600  df-fn 5601  df-f 5602  df-f1 5603  df-fo 5604  df-f1o 5605  df-fv 5606  df-riota 6264  df-ov 6305  df-oprab 6306  df-mpt2 6307  df-om 6704  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-er 7368  df-en 7575  df-dom 7576  df-sdom 7577  df-pnf 9678  df-mnf 9679  df-xr 9680  df-ltxr 9681  df-le 9682  df-sub 9863  df-neg 9864  df-nn 10611  df-2 10669  df-ndx 15112  df-slot 15113  df-base 15114  df-sets 15115  df-plusg 15191  df-0g 15328  df-mgm 16476  df-sgrp 16515  df-mnd 16525  df-grp 16661  df-mgp 17712  df-ring 17770  df-lmod 18081  df-lss 18144
This theorem is referenced by:  lspsn  18213
  Copyright terms: Public domain W3C validator