MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspval Structured version   Unicode version

Theorem lspval 17159
Description: The span of a set of vectors (in a left module). (spanval 24868 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspval.v  |-  V  =  ( Base `  W
)
lspval.s  |-  S  =  ( LSubSp `  W )
lspval.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspval  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  ( N `  U )  =  |^| { t  e.  S  |  U  C_  t } )
Distinct variable groups:    t, S    t, U    t, V
Allowed substitution hints:    N( t)    W( t)

Proof of Theorem lspval
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 lspval.v . . . . 5  |-  V  =  ( Base `  W
)
2 lspval.s . . . . 5  |-  S  =  ( LSubSp `  W )
3 lspval.n . . . . 5  |-  N  =  ( LSpan `  W )
41, 2, 3lspfval 17157 . . . 4  |-  ( W  e.  LMod  ->  N  =  ( s  e.  ~P V  |->  |^| { t  e.  S  |  s  C_  t } ) )
54fveq1d 5788 . . 3  |-  ( W  e.  LMod  ->  ( N `
 U )  =  ( ( s  e. 
~P V  |->  |^| { t  e.  S  |  s 
C_  t } ) `
 U ) )
65adantr 465 . 2  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  ( N `  U )  =  ( ( s  e.  ~P V  |->  |^|
{ t  e.  S  |  s  C_  t } ) `  U ) )
7 simpr 461 . . . 4  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  U  C_  V )
8 fvex 5796 . . . . . 6  |-  ( Base `  W )  e.  _V
91, 8eqeltri 2533 . . . . 5  |-  V  e. 
_V
109elpw2 4551 . . . 4  |-  ( U  e.  ~P V  <->  U  C_  V
)
117, 10sylibr 212 . . 3  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  U  e.  ~P V )
121, 2lss1 17123 . . . . 5  |-  ( W  e.  LMod  ->  V  e.  S )
13 sseq2 3473 . . . . . 6  |-  ( t  =  V  ->  ( U  C_  t  <->  U  C_  V
) )
1413rspcev 3166 . . . . 5  |-  ( ( V  e.  S  /\  U  C_  V )  ->  E. t  e.  S  U  C_  t )
1512, 14sylan 471 . . . 4  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  E. t  e.  S  U  C_  t
)
16 intexrab 4546 . . . 4  |-  ( E. t  e.  S  U  C_  t  <->  |^| { t  e.  S  |  U  C_  t }  e.  _V )
1715, 16sylib 196 . . 3  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  |^| { t  e.  S  |  U  C_  t }  e.  _V )
18 sseq1 3472 . . . . . 6  |-  ( s  =  U  ->  (
s  C_  t  <->  U  C_  t
) )
1918rabbidv 3057 . . . . 5  |-  ( s  =  U  ->  { t  e.  S  |  s 
C_  t }  =  { t  e.  S  |  U  C_  t } )
2019inteqd 4228 . . . 4  |-  ( s  =  U  ->  |^| { t  e.  S  |  s 
C_  t }  =  |^| { t  e.  S  |  U  C_  t } )
21 eqid 2451 . . . 4  |-  ( s  e.  ~P V  |->  |^|
{ t  e.  S  |  s  C_  t } )  =  ( s  e.  ~P V  |->  |^|
{ t  e.  S  |  s  C_  t } )
2220, 21fvmptg 5868 . . 3  |-  ( ( U  e.  ~P V  /\  |^| { t  e.  S  |  U  C_  t }  e.  _V )  ->  ( ( s  e.  ~P V  |->  |^|
{ t  e.  S  |  s  C_  t } ) `  U )  =  |^| { t  e.  S  |  U  C_  t } )
2311, 17, 22syl2anc 661 . 2  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  (
( s  e.  ~P V  |->  |^| { t  e.  S  |  s  C_  t } ) `  U
)  =  |^| { t  e.  S  |  U  C_  t } )
246, 23eqtrd 2491 1  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  ( N `  U )  =  |^| { t  e.  S  |  U  C_  t } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   E.wrex 2794   {crab 2797   _Vcvv 3065    C_ wss 3423   ~Pcpw 3955   |^|cint 4223    |-> cmpt 4445   ` cfv 5513   Basecbs 14273   LModclmod 17051   LSubSpclss 17116   LSpanclspn 17155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4498  ax-sep 4508  ax-nul 4516  ax-pow 4565  ax-pr 4626
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2599  df-ne 2644  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3067  df-sbc 3282  df-csb 3384  df-dif 3426  df-un 3428  df-in 3430  df-ss 3437  df-nul 3733  df-if 3887  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4187  df-int 4224  df-iun 4268  df-br 4388  df-opab 4446  df-mpt 4447  df-id 4731  df-xp 4941  df-rel 4942  df-cnv 4943  df-co 4944  df-dm 4945  df-rn 4946  df-res 4947  df-ima 4948  df-iota 5476  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-riota 6148  df-ov 6190  df-0g 14479  df-mnd 15514  df-grp 15644  df-lmod 17053  df-lss 17117  df-lsp 17156
This theorem is referenced by:  lspid  17166  lspss  17168  lspssid  17169  lcosslsp  31076  dochspss  35326
  Copyright terms: Public domain W3C validator