MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspssid Structured version   Unicode version

Theorem lspssid 17414
Description: A set of vectors is a subset of its span. (spanss2 25939 analog.) (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspss.v  |-  V  =  ( Base `  W
)
lspss.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspssid  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  U  C_  ( N `  U
) )

Proof of Theorem lspssid
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 ssintub 4300 . 2  |-  U  C_  |^|
{ t  e.  (
LSubSp `  W )  |  U  C_  t }
2 lspss.v . . 3  |-  V  =  ( Base `  W
)
3 eqid 2467 . . 3  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
4 lspss.n . . 3  |-  N  =  ( LSpan `  W )
52, 3, 4lspval 17404 . 2  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  ( N `  U )  =  |^| { t  e.  ( LSubSp `  W )  |  U  C_  t } )
61, 5syl5sseqr 3553 1  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  U  C_  ( N `  U
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   {crab 2818    C_ wss 3476   |^|cint 4282   ` cfv 5586   Basecbs 14486   LModclmod 17295   LSubSpclss 17361   LSpanclspn 17400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-0g 14693  df-mnd 15728  df-grp 15858  df-lmod 17297  df-lss 17362  df-lsp 17401
This theorem is referenced by:  lspun  17416  lspsnid  17422  lsslsp  17444  lmhmlsp  17478  lsmsp  17515  lsmssspx  17517  lspvadd  17525  lspsolvlem  17571  lspsolv  17572  lsppratlem3  17578  lsppratlem4  17579  islbs3  17584  lbsextlem2  17588  lbsextlem4  17590  rspssid  17653  ocvlsp  18474  obselocv  18526  frlmsslsp  18596  frlmsslspOLD  18597  lindff1  18622  islinds3  18636  islssfg2  30621  dochocsp  36176  djhunssN  36206
  Copyright terms: Public domain W3C validator