MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspss Structured version   Unicode version

Theorem lspss 18146
Description: Span preserves subset ordering. (spanss 26844 analog.) (Contributed by NM, 11-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspss.v  |-  V  =  ( Base `  W
)
lspss.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspss  |-  ( ( W  e.  LMod  /\  U  C_  V  /\  T  C_  U )  ->  ( N `  T )  C_  ( N `  U
) )

Proof of Theorem lspss
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 simpl3 1010 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  C_  V  /\  T  C_  U )  /\  t  e.  ( LSubSp `  W ) )  ->  T  C_  U )
2 sstr2 3477 . . . . 5  |-  ( T 
C_  U  ->  ( U  C_  t  ->  T  C_  t ) )
31, 2syl 17 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  C_  V  /\  T  C_  U )  /\  t  e.  ( LSubSp `  W ) )  -> 
( U  C_  t  ->  T  C_  t )
)
43ss2rabdv 3548 . . 3  |-  ( ( W  e.  LMod  /\  U  C_  V  /\  T  C_  U )  ->  { t  e.  ( LSubSp `  W
)  |  U  C_  t }  C_  { t  e.  ( LSubSp `  W
)  |  T  C_  t } )
5 intss 4279 . . 3  |-  ( { t  e.  ( LSubSp `  W )  |  U  C_  t }  C_  { t  e.  ( LSubSp `  W
)  |  T  C_  t }  ->  |^| { t  e.  ( LSubSp `  W
)  |  T  C_  t }  C_  |^| { t  e.  ( LSubSp `  W
)  |  U  C_  t } )
64, 5syl 17 . 2  |-  ( ( W  e.  LMod  /\  U  C_  V  /\  T  C_  U )  ->  |^| { t  e.  ( LSubSp `  W
)  |  T  C_  t }  C_  |^| { t  e.  ( LSubSp `  W
)  |  U  C_  t } )
7 simp1 1005 . . 3  |-  ( ( W  e.  LMod  /\  U  C_  V  /\  T  C_  U )  ->  W  e.  LMod )
8 simp3 1007 . . . 4  |-  ( ( W  e.  LMod  /\  U  C_  V  /\  T  C_  U )  ->  T  C_  U )
9 simp2 1006 . . . 4  |-  ( ( W  e.  LMod  /\  U  C_  V  /\  T  C_  U )  ->  U  C_  V )
108, 9sstrd 3480 . . 3  |-  ( ( W  e.  LMod  /\  U  C_  V  /\  T  C_  U )  ->  T  C_  V )
11 lspss.v . . . 4  |-  V  =  ( Base `  W
)
12 eqid 2429 . . . 4  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
13 lspss.n . . . 4  |-  N  =  ( LSpan `  W )
1411, 12, 13lspval 18137 . . 3  |-  ( ( W  e.  LMod  /\  T  C_  V )  ->  ( N `  T )  =  |^| { t  e.  ( LSubSp `  W )  |  T  C_  t } )
157, 10, 14syl2anc 665 . 2  |-  ( ( W  e.  LMod  /\  U  C_  V  /\  T  C_  U )  ->  ( N `  T )  =  |^| { t  e.  ( LSubSp `  W )  |  T  C_  t } )
1611, 12, 13lspval 18137 . . 3  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  ( N `  U )  =  |^| { t  e.  ( LSubSp `  W )  |  U  C_  t } )
17163adant3 1025 . 2  |-  ( ( W  e.  LMod  /\  U  C_  V  /\  T  C_  U )  ->  ( N `  U )  =  |^| { t  e.  ( LSubSp `  W )  |  U  C_  t } )
186, 15, 173sstr4d 3513 1  |-  ( ( W  e.  LMod  /\  U  C_  V  /\  T  C_  U )  ->  ( N `  T )  C_  ( N `  U
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870   {crab 2786    C_ wss 3442   |^|cint 4258   ` cfv 5601   Basecbs 15084   LModclmod 18030   LSubSpclss 18094   LSpanclspn 18133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-0g 15303  df-mgm 16443  df-sgrp 16482  df-mnd 16492  df-grp 16628  df-lmod 18032  df-lss 18095  df-lsp 18134
This theorem is referenced by:  lspun  18149  lspssp  18150  lspprid1  18159  lbspss  18244  lspsolvlem  18304  lspsolv  18305  lsppratlem3  18311  lbsextlem2  18321  lbsextlem3  18322  lbsextlem4  18323  lindfrn  19314  f1lindf  19315  lssats  32298  lpssat  32299  lssatle  32301  lssat  32302  dvhdimlem  34732  dvh3dim3N  34737  mapdindp2  35009  lspindp5  35058
  Copyright terms: Public domain W3C validator