MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsolv Structured version   Unicode version

Theorem lspsolv 17222
Description: If  X is in the span of  A  u.  { Y } but not  A, then  Y is in the span of  A  u.  { X }. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lspsolv.v  |-  V  =  ( Base `  W
)
lspsolv.s  |-  S  =  ( LSubSp `  W )
lspsolv.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspsolv  |-  ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  ->  Y  e.  ( N `  ( A  u.  { X }
) ) )

Proof of Theorem lspsolv
Dummy variables  r 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspsolv.v . . 3  |-  V  =  ( Base `  W
)
2 lspsolv.s . . 3  |-  S  =  ( LSubSp `  W )
3 lspsolv.n . . 3  |-  N  =  ( LSpan `  W )
4 eqid 2441 . . 3  |-  (Scalar `  W )  =  (Scalar `  W )
5 eqid 2441 . . 3  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
6 eqid 2441 . . 3  |-  ( +g  `  W )  =  ( +g  `  W )
7 eqid 2441 . . 3  |-  ( .s
`  W )  =  ( .s `  W
)
8 eqid 2441 . . 3  |-  { z  e.  V  |  E. r  e.  ( Base `  (Scalar `  W )
) ( z ( +g  `  W ) ( r ( .s
`  W ) Y ) )  e.  ( N `  A ) }  =  { z  e.  V  |  E. r  e.  ( Base `  (Scalar `  W )
) ( z ( +g  `  W ) ( r ( .s
`  W ) Y ) )  e.  ( N `  A ) }
9 lveclmod 17185 . . . 4  |-  ( W  e.  LVec  ->  W  e. 
LMod )
109adantr 465 . . 3  |-  ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  ->  W  e.  LMod )
11 simpr1 994 . . 3  |-  ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  ->  A  C_  V
)
12 simpr2 995 . . 3  |-  ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  ->  Y  e.  V
)
13 simpr3 996 . . . 4  |-  ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  ->  X  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) )
1413eldifad 3338 . . 3  |-  ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  ->  X  e.  ( N `  ( A  u.  { Y }
) ) )
151, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14lspsolvlem 17221 . 2  |-  ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  ->  E. r  e.  (
Base `  (Scalar `  W
) ) ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) )
164lvecdrng 17184 . . . . . . 7  |-  ( W  e.  LVec  ->  (Scalar `  W )  e.  DivRing )
1716ad2antrr 725 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
(Scalar `  W )  e.  DivRing )
18 simprl 755 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
r  e.  ( Base `  (Scalar `  W )
) )
1910adantr 465 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  W  e.  LMod )
2012adantr 465 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  Y  e.  V )
21 eqid 2441 . . . . . . . . . . . . 13  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
22 eqid 2441 . . . . . . . . . . . . 13  |-  ( 0g
`  W )  =  ( 0g `  W
)
231, 4, 7, 21, 22lmod0vs 16979 . . . . . . . . . . . 12  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  (
( 0g `  (Scalar `  W ) ) ( .s `  W ) Y )  =  ( 0g `  W ) )
2419, 20, 23syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( 0g `  (Scalar `  W ) ) ( .s `  W
) Y )  =  ( 0g `  W
) )
2524oveq2d 6105 . . . . . . . . . 10  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( X ( +g  `  W ) ( ( 0g `  (Scalar `  W ) ) ( .s `  W ) Y ) )  =  ( X ( +g  `  W ) ( 0g
`  W ) ) )
2611adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  A  C_  V )
2720snssd 4016 . . . . . . . . . . . . . . 15  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  { Y }  C_  V
)
2826, 27unssd 3530 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( A  u.  { Y } )  C_  V
)
291, 3lspssv 17062 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LMod  /\  ( A  u.  { Y } )  C_  V
)  ->  ( N `  ( A  u.  { Y } ) )  C_  V )
3019, 28, 29syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( N `  ( A  u.  { Y } ) )  C_  V )
3130ssdifssd 3492 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) )  C_  V
)
3213adantr 465 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  X  e.  ( ( N `  ( A  u.  { Y } ) )  \  ( N `
 A ) ) )
3331, 32sseldd 3355 . . . . . . . . . . 11  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  X  e.  V )
341, 6, 22lmod0vrid 16977 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( X ( +g  `  W
) ( 0g `  W ) )  =  X )
3519, 33, 34syl2anc 661 . . . . . . . . . 10  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( X ( +g  `  W ) ( 0g
`  W ) )  =  X )
3625, 35eqtrd 2473 . . . . . . . . 9  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( X ( +g  `  W ) ( ( 0g `  (Scalar `  W ) ) ( .s `  W ) Y ) )  =  X )
3736, 32eqeltrd 2515 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( X ( +g  `  W ) ( ( 0g `  (Scalar `  W ) ) ( .s `  W ) Y ) )  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) )
3837eldifbd 3339 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  -.  ( X ( +g  `  W ) ( ( 0g `  (Scalar `  W ) ) ( .s `  W ) Y ) )  e.  ( N `  A
) )
39 simprr 756 . . . . . . . . 9  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( X ( +g  `  W ) ( r ( .s `  W
) Y ) )  e.  ( N `  A ) )
40 oveq1 6096 . . . . . . . . . . 11  |-  ( r  =  ( 0g `  (Scalar `  W ) )  ->  ( r ( .s `  W ) Y )  =  ( ( 0g `  (Scalar `  W ) ) ( .s `  W ) Y ) )
4140oveq2d 6105 . . . . . . . . . 10  |-  ( r  =  ( 0g `  (Scalar `  W ) )  ->  ( X ( +g  `  W ) ( r ( .s
`  W ) Y ) )  =  ( X ( +g  `  W
) ( ( 0g
`  (Scalar `  W )
) ( .s `  W ) Y ) ) )
4241eleq1d 2507 . . . . . . . . 9  |-  ( r  =  ( 0g `  (Scalar `  W ) )  ->  ( ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
)  <->  ( X ( +g  `  W ) ( ( 0g `  (Scalar `  W ) ) ( .s `  W
) Y ) )  e.  ( N `  A ) ) )
4339, 42syl5ibcom 220 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( r  =  ( 0g `  (Scalar `  W ) )  -> 
( X ( +g  `  W ) ( ( 0g `  (Scalar `  W ) ) ( .s `  W ) Y ) )  e.  ( N `  A
) ) )
4443necon3bd 2643 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( -.  ( X ( +g  `  W
) ( ( 0g
`  (Scalar `  W )
) ( .s `  W ) Y ) )  e.  ( N `
 A )  -> 
r  =/=  ( 0g
`  (Scalar `  W )
) ) )
4538, 44mpd 15 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
r  =/=  ( 0g
`  (Scalar `  W )
) )
46 eqid 2441 . . . . . . 7  |-  ( .r
`  (Scalar `  W )
)  =  ( .r
`  (Scalar `  W )
)
47 eqid 2441 . . . . . . 7  |-  ( 1r
`  (Scalar `  W )
)  =  ( 1r
`  (Scalar `  W )
)
48 eqid 2441 . . . . . . 7  |-  ( invr `  (Scalar `  W )
)  =  ( invr `  (Scalar `  W )
)
495, 21, 46, 47, 48drnginvrl 16849 . . . . . 6  |-  ( ( (Scalar `  W )  e.  DivRing  /\  r  e.  ( Base `  (Scalar `  W
) )  /\  r  =/=  ( 0g `  (Scalar `  W ) ) )  ->  ( ( (
invr `  (Scalar `  W
) ) `  r
) ( .r `  (Scalar `  W ) ) r )  =  ( 1r `  (Scalar `  W ) ) )
5017, 18, 45, 49syl3anc 1218 . . . . 5  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( ( invr `  (Scalar `  W )
) `  r )
( .r `  (Scalar `  W ) ) r )  =  ( 1r
`  (Scalar `  W )
) )
5150oveq1d 6104 . . . 4  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( ( (
invr `  (Scalar `  W
) ) `  r
) ( .r `  (Scalar `  W ) ) r ) ( .s
`  W ) Y )  =  ( ( 1r `  (Scalar `  W ) ) ( .s `  W ) Y ) )
525, 21, 48drnginvrcl 16847 . . . . . 6  |-  ( ( (Scalar `  W )  e.  DivRing  /\  r  e.  ( Base `  (Scalar `  W
) )  /\  r  =/=  ( 0g `  (Scalar `  W ) ) )  ->  ( ( invr `  (Scalar `  W )
) `  r )  e.  ( Base `  (Scalar `  W ) ) )
5317, 18, 45, 52syl3anc 1218 . . . . 5  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( invr `  (Scalar `  W ) ) `  r )  e.  (
Base `  (Scalar `  W
) ) )
541, 4, 7, 5, 46lmodvsass 16971 . . . . 5  |-  ( ( W  e.  LMod  /\  (
( ( invr `  (Scalar `  W ) ) `  r )  e.  (
Base `  (Scalar `  W
) )  /\  r  e.  ( Base `  (Scalar `  W ) )  /\  Y  e.  V )
)  ->  ( (
( ( invr `  (Scalar `  W ) ) `  r ) ( .r
`  (Scalar `  W )
) r ) ( .s `  W ) Y )  =  ( ( ( invr `  (Scalar `  W ) ) `  r ) ( .s
`  W ) ( r ( .s `  W ) Y ) ) )
5519, 53, 18, 20, 54syl13anc 1220 . . . 4  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( ( (
invr `  (Scalar `  W
) ) `  r
) ( .r `  (Scalar `  W ) ) r ) ( .s
`  W ) Y )  =  ( ( ( invr `  (Scalar `  W ) ) `  r ) ( .s
`  W ) ( r ( .s `  W ) Y ) ) )
561, 4, 7, 47lmodvs1 16974 . . . . 5  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) Y )  =  Y )
5719, 20, 56syl2anc 661 . . . 4  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( 1r `  (Scalar `  W ) ) ( .s `  W
) Y )  =  Y )
5851, 55, 573eqtr3d 2481 . . 3  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( ( invr `  (Scalar `  W )
) `  r )
( .s `  W
) ( r ( .s `  W ) Y ) )  =  Y )
5933snssd 4016 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  { X }  C_  V
)
6026, 59unssd 3530 . . . . 5  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( A  u.  { X } )  C_  V
)
611, 2, 3lspcl 17055 . . . . 5  |-  ( ( W  e.  LMod  /\  ( A  u.  { X } )  C_  V
)  ->  ( N `  ( A  u.  { X } ) )  e.  S )
6219, 60, 61syl2anc 661 . . . 4  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( N `  ( A  u.  { X } ) )  e.  S )
631, 4, 7, 5lmodvscl 16963 . . . . . . 7  |-  ( ( W  e.  LMod  /\  r  e.  ( Base `  (Scalar `  W ) )  /\  Y  e.  V )  ->  ( r ( .s
`  W ) Y )  e.  V )
6419, 18, 20, 63syl3anc 1218 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( r ( .s
`  W ) Y )  e.  V )
65 eqid 2441 . . . . . . 7  |-  ( -g `  W )  =  (
-g `  W )
661, 6, 65lmodvpncan 16996 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
r ( .s `  W ) Y )  e.  V  /\  X  e.  V )  ->  (
( ( r ( .s `  W ) Y ) ( +g  `  W ) X ) ( -g `  W
) X )  =  ( r ( .s
`  W ) Y ) )
6719, 64, 33, 66syl3anc 1218 . . . . 5  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( ( r ( .s `  W
) Y ) ( +g  `  W ) X ) ( -g `  W ) X )  =  ( r ( .s `  W ) Y ) )
681, 6lmodcom 16989 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  (
r ( .s `  W ) Y )  e.  V  /\  X  e.  V )  ->  (
( r ( .s
`  W ) Y ) ( +g  `  W
) X )  =  ( X ( +g  `  W ) ( r ( .s `  W
) Y ) ) )
6919, 64, 33, 68syl3anc 1218 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( r ( .s `  W ) Y ) ( +g  `  W ) X )  =  ( X ( +g  `  W ) ( r ( .s
`  W ) Y ) ) )
70 ssun1 3517 . . . . . . . . . 10  |-  A  C_  ( A  u.  { X } )
7170a1i 11 . . . . . . . . 9  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  A  C_  ( A  u.  { X } ) )
721, 3lspss 17063 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  ( A  u.  { X } )  C_  V  /\  A  C_  ( A  u.  { X }
) )  ->  ( N `  A )  C_  ( N `  ( A  u.  { X } ) ) )
7319, 60, 71, 72syl3anc 1218 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( N `  A
)  C_  ( N `  ( A  u.  { X } ) ) )
7473, 39sseldd 3355 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( X ( +g  `  W ) ( r ( .s `  W
) Y ) )  e.  ( N `  ( A  u.  { X } ) ) )
7569, 74eqeltrd 2515 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( r ( .s `  W ) Y ) ( +g  `  W ) X )  e.  ( N `  ( A  u.  { X } ) ) )
761, 3lspssid 17064 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( A  u.  { X } )  C_  V
)  ->  ( A  u.  { X } ) 
C_  ( N `  ( A  u.  { X } ) ) )
7719, 60, 76syl2anc 661 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( A  u.  { X } )  C_  ( N `  ( A  u.  { X } ) ) )
78 snidg 3901 . . . . . . . 8  |-  ( X  e.  V  ->  X  e.  { X } )
79 elun2 3522 . . . . . . . 8  |-  ( X  e.  { X }  ->  X  e.  ( A  u.  { X }
) )
8033, 78, 793syl 20 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  X  e.  ( A  u.  { X } ) )
8177, 80sseldd 3355 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  X  e.  ( N `  ( A  u.  { X } ) ) )
8265, 2lssvsubcl 17023 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  ( N `  ( A  u.  { X } ) )  e.  S )  /\  (
( ( r ( .s `  W ) Y ) ( +g  `  W ) X )  e.  ( N `  ( A  u.  { X } ) )  /\  X  e.  ( N `  ( A  u.  { X } ) ) ) )  ->  ( (
( r ( .s
`  W ) Y ) ( +g  `  W
) X ) (
-g `  W ) X )  e.  ( N `  ( A  u.  { X }
) ) )
8319, 62, 75, 81, 82syl22anc 1219 . . . . 5  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( ( r ( .s `  W
) Y ) ( +g  `  W ) X ) ( -g `  W ) X )  e.  ( N `  ( A  u.  { X } ) ) )
8467, 83eqeltrrd 2516 . . . 4  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( r ( .s
`  W ) Y )  e.  ( N `
 ( A  u.  { X } ) ) )
854, 7, 5, 2lssvscl 17034 . . . 4  |-  ( ( ( W  e.  LMod  /\  ( N `  ( A  u.  { X } ) )  e.  S )  /\  (
( ( invr `  (Scalar `  W ) ) `  r )  e.  (
Base `  (Scalar `  W
) )  /\  (
r ( .s `  W ) Y )  e.  ( N `  ( A  u.  { X } ) ) ) )  ->  ( (
( invr `  (Scalar `  W
) ) `  r
) ( .s `  W ) ( r ( .s `  W
) Y ) )  e.  ( N `  ( A  u.  { X } ) ) )
8619, 62, 53, 84, 85syl22anc 1219 . . 3  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( ( invr `  (Scalar `  W )
) `  r )
( .s `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  ( A  u.  { X } ) ) )
8758, 86eqeltrrd 2516 . 2  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  Y  e.  ( N `  ( A  u.  { X } ) ) )
8815, 87rexlimddv 2843 1  |-  ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  ->  Y  e.  ( N `  ( A  u.  { X }
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2604   E.wrex 2714   {crab 2717    \ cdif 3323    u. cun 3324    C_ wss 3326   {csn 3875   ` cfv 5416  (class class class)co 6089   Basecbs 14172   +g cplusg 14236   .rcmulr 14237  Scalarcsca 14239   .scvsca 14240   0gc0g 14376   -gcsg 15411   1rcur 16601   invrcinvr 16761   DivRingcdr 16830   LModclmod 16946   LSubSpclss 17011   LSpanclspn 17050   LVecclvec 17181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-cnex 9336  ax-resscn 9337  ax-1cn 9338  ax-icn 9339  ax-addcl 9340  ax-addrcl 9341  ax-mulcl 9342  ax-mulrcl 9343  ax-mulcom 9344  ax-addass 9345  ax-mulass 9346  ax-distr 9347  ax-i2m1 9348  ax-1ne0 9349  ax-1rid 9350  ax-rnegex 9351  ax-rrecex 9352  ax-cnre 9353  ax-pre-lttri 9354  ax-pre-lttrn 9355  ax-pre-ltadd 9356  ax-pre-mulgt0 9357
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-int 4127  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-om 6475  df-1st 6575  df-2nd 6576  df-tpos 6743  df-recs 6830  df-rdg 6864  df-er 7099  df-en 7309  df-dom 7310  df-sdom 7311  df-pnf 9418  df-mnf 9419  df-xr 9420  df-ltxr 9421  df-le 9422  df-sub 9595  df-neg 9596  df-nn 10321  df-2 10378  df-3 10379  df-ndx 14175  df-slot 14176  df-base 14177  df-sets 14178  df-ress 14179  df-plusg 14249  df-mulr 14250  df-0g 14378  df-mnd 15413  df-grp 15543  df-minusg 15544  df-sbg 15545  df-cmn 16277  df-abl 16278  df-mgp 16590  df-ur 16602  df-rng 16645  df-oppr 16713  df-dvdsr 16731  df-unit 16732  df-invr 16762  df-drng 16832  df-lmod 16948  df-lss 17012  df-lsp 17051  df-lvec 17182
This theorem is referenced by:  lssacsex  17223  lspsnat  17224  lsppratlem1  17226  lsppratlem3  17228  lsppratlem4  17229  lbsextlem4  17240
  Copyright terms: Public domain W3C validator