MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnneg Structured version   Unicode version

Theorem lspsnneg 17109
Description: Negation does not change the span of a singleton. (Contributed by NM, 24-Apr-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsnneg.v  |-  V  =  ( Base `  W
)
lspsnneg.m  |-  M  =  ( invg `  W )
lspsnneg.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspsnneg  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { ( M `  X ) } )  =  ( N `  { X } ) )

Proof of Theorem lspsnneg
StepHypRef Expression
1 lspsnneg.v . . . . . 6  |-  V  =  ( Base `  W
)
2 lspsnneg.m . . . . . 6  |-  M  =  ( invg `  W )
3 eqid 2443 . . . . . 6  |-  (Scalar `  W )  =  (Scalar `  W )
4 eqid 2443 . . . . . 6  |-  ( .s
`  W )  =  ( .s `  W
)
5 eqid 2443 . . . . . 6  |-  ( 1r
`  (Scalar `  W )
)  =  ( 1r
`  (Scalar `  W )
)
6 eqid 2443 . . . . . 6  |-  ( invg `  (Scalar `  W ) )  =  ( invg `  (Scalar `  W ) )
71, 2, 3, 4, 5, 6lmodvneg1 17010 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) X )  =  ( M `
 X ) )
87sneqd 3910 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { ( ( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) X ) }  =  {
( M `  X
) } )
98fveq2d 5716 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) X ) } )  =  ( N `  {
( M `  X
) } ) )
10 simpl 457 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  W  e.  LMod )
113lmodfgrp 16979 . . . . . 6  |-  ( W  e.  LMod  ->  (Scalar `  W )  e.  Grp )
12 eqid 2443 . . . . . . 7  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
133, 12, 5lmod1cl 16997 . . . . . 6  |-  ( W  e.  LMod  ->  ( 1r
`  (Scalar `  W )
)  e.  ( Base `  (Scalar `  W )
) )
1412, 6grpinvcl 15604 . . . . . 6  |-  ( ( (Scalar `  W )  e.  Grp  /\  ( 1r
`  (Scalar `  W )
)  e.  ( Base `  (Scalar `  W )
) )  ->  (
( invg `  (Scalar `  W ) ) `
 ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W )
) )
1511, 13, 14syl2anc 661 . . . . 5  |-  ( W  e.  LMod  ->  ( ( invg `  (Scalar `  W ) ) `  ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W ) ) )
1615adantr 465 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( invg `  (Scalar `  W ) ) `
 ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W )
) )
17 simpr 461 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  V )
18 lspsnneg.n . . . . 5  |-  N  =  ( LSpan `  W )
193, 12, 1, 4, 18lspsnvsi 17107 . . . 4  |-  ( ( W  e.  LMod  /\  (
( invg `  (Scalar `  W ) ) `
 ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W )
)  /\  X  e.  V )  ->  ( N `  { (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) X ) } )  C_  ( N `  { X } ) )
2010, 16, 17, 19syl3anc 1218 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) X ) } )  C_  ( N `  { X } ) )
219, 20eqsstr3d 3412 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { ( M `  X ) } )  C_  ( N `  { X } ) )
221, 2lmodvnegcl 17008 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( M `  X )  e.  V )
231, 2, 3, 4, 5, 6lmodvneg1 17010 . . . . . . 7  |-  ( ( W  e.  LMod  /\  ( M `  X )  e.  V )  ->  (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) )  =  ( M `
 ( M `  X ) ) )
2422, 23syldan 470 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) )  =  ( M `
 ( M `  X ) ) )
25 lmodgrp 16977 . . . . . . 7  |-  ( W  e.  LMod  ->  W  e. 
Grp )
261, 2grpinvinv 15614 . . . . . . 7  |-  ( ( W  e.  Grp  /\  X  e.  V )  ->  ( M `  ( M `  X )
)  =  X )
2725, 26sylan 471 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( M `  ( M `  X ) )  =  X )
2824, 27eqtrd 2475 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) )  =  X )
2928sneqd 3910 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { ( ( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) ) }  =  { X } )
3029fveq2d 5716 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) ) } )  =  ( N `  { X } ) )
313, 12, 1, 4, 18lspsnvsi 17107 . . . 4  |-  ( ( W  e.  LMod  /\  (
( invg `  (Scalar `  W ) ) `
 ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W )
)  /\  ( M `  X )  e.  V
)  ->  ( N `  { ( ( ( invg `  (Scalar `  W ) ) `  ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) ( M `  X ) ) } )  C_  ( N `  { ( M `  X ) } ) )
3210, 16, 22, 31syl3anc 1218 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) ) } )  C_  ( N `  { ( M `  X ) } ) )
3330, 32eqsstr3d 3412 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  C_  ( N `  { ( M `  X ) } ) )
3421, 33eqssd 3394 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { ( M `  X ) } )  =  ( N `  { X } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756    C_ wss 3349   {csn 3898   ` cfv 5439  (class class class)co 6112   Basecbs 14195  Scalarcsca 14262   .scvsca 14263   Grpcgrp 15431   invgcminusg 15432   1rcur 16625   LModclmod 16970   LSpanclspn 17074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1st 6598  df-2nd 6599  df-recs 6853  df-rdg 6887  df-er 7122  df-en 7332  df-dom 7333  df-sdom 7334  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-nn 10344  df-2 10401  df-ndx 14198  df-slot 14199  df-base 14200  df-sets 14201  df-plusg 14272  df-0g 14401  df-mnd 15436  df-grp 15566  df-minusg 15567  df-sbg 15568  df-mgp 16614  df-ur 16626  df-rng 16669  df-lmod 16972  df-lss 17036  df-lsp 17075
This theorem is referenced by:  lspsnsub  17110  lmodindp1  17117  lspsntrim  17201  baerlem5amN  35457  baerlem5bmN  35458  baerlem5abmN  35459  hdmap1neglem1N  35569
  Copyright terms: Public domain W3C validator