MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnid Structured version   Unicode version

Theorem lspsnid 17200
Description: A vector belongs to the span of its singleton. (spansnid 25138 analog.) (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsnid.v  |-  V  =  ( Base `  W
)
lspsnid.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspsnid  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  ( N `  { X } ) )

Proof of Theorem lspsnid
StepHypRef Expression
1 snssi 4128 . . 3  |-  ( X  e.  V  ->  { X }  C_  V )
2 lspsnid.v . . . 4  |-  V  =  ( Base `  W
)
3 lspsnid.n . . . 4  |-  N  =  ( LSpan `  W )
42, 3lspssid 17192 . . 3  |-  ( ( W  e.  LMod  /\  { X }  C_  V )  ->  { X }  C_  ( N `  { X } ) )
51, 4sylan2 474 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { X }  C_  ( N `  { X } ) )
6 snssg 4118 . . 3  |-  ( X  e.  V  ->  ( X  e.  ( N `  { X } )  <->  { X }  C_  ( N `  { X } ) ) )
76adantl 466 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( X  e.  ( N `  { X } )  <->  { X }  C_  ( N `  { X } ) ) )
85, 7mpbird 232 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  ( N `  { X } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758    C_ wss 3439   {csn 3988   ` cfv 5529   Basecbs 14295   LModclmod 17074   LSpanclspn 17178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-0g 14502  df-mnd 15537  df-grp 15667  df-lmod 17076  df-lss 17140  df-lsp 17179
This theorem is referenced by:  lspsnel6  17201  lssats2  17207  lspsneli  17208  lspsn  17209  lspsneq0  17219  lsmelval2  17292  lspprabs  17302  lspabs3  17328  lspsnel4  17331  lspdisjb  17333  lspfixed  17335  lshpnelb  32987  lsateln0  32998  lssats  33015  dia1dimid  35066  dochnel  35396  dihjat1lem  35431  dochsnkr2cl  35477  lcfrvalsnN  35544  lcfrlem15  35560  mapdpglem2  35676  mapdpglem9  35683  mapdpglem12  35686  mapdpglem14  35688  mapdindp0  35722  mapdindp3  35725  hdmap11lem2  35848  hdmaprnlem3N  35856  hdmaprnlem7N  35861  hdmaprnlem8N  35862  hdmaprnlem3eN  35864  hdmaplkr  35919
  Copyright terms: Public domain W3C validator