MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsneq0 Structured version   Unicode version

Theorem lspsneq0 17093
Description: Span of the singleton is the zero subspace iff the vector is zero. (Contributed by NM, 27-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsneq0.v  |-  V  =  ( Base `  W
)
lspsneq0.z  |-  .0.  =  ( 0g `  W )
lspsneq0.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspsneq0  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( N `  { X } )  =  {  .0.  }  <->  X  =  .0.  ) )

Proof of Theorem lspsneq0
StepHypRef Expression
1 lspsneq0.v . . . . 5  |-  V  =  ( Base `  W
)
2 lspsneq0.n . . . . 5  |-  N  =  ( LSpan `  W )
31, 2lspsnid 17074 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  ( N `  { X } ) )
4 eleq2 2504 . . . 4  |-  ( ( N `  { X } )  =  {  .0.  }  ->  ( X  e.  ( N `  { X } )  <->  X  e.  {  .0.  } ) )
53, 4syl5ibcom 220 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( N `  { X } )  =  {  .0.  }  ->  X  e.  {  .0.  } ) )
6 elsni 3902 . . 3  |-  ( X  e.  {  .0.  }  ->  X  =  .0.  )
75, 6syl6 33 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( N `  { X } )  =  {  .0.  }  ->  X  =  .0.  ) )
8 lspsneq0.z . . . . 5  |-  .0.  =  ( 0g `  W )
98, 2lspsn0 17089 . . . 4  |-  ( W  e.  LMod  ->  ( N `
 {  .0.  }
)  =  {  .0.  } )
109adantr 465 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  {  .0.  }
)  =  {  .0.  } )
11 sneq 3887 . . . . 5  |-  ( X  =  .0.  ->  { X }  =  {  .0.  } )
1211fveq2d 5695 . . . 4  |-  ( X  =  .0.  ->  ( N `  { X } )  =  ( N `  {  .0.  } ) )
1312eqeq1d 2451 . . 3  |-  ( X  =  .0.  ->  (
( N `  { X } )  =  {  .0.  }  <->  ( N `  {  .0.  } )  =  {  .0.  } ) )
1410, 13syl5ibrcom 222 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( X  =  .0.  ->  ( N `  { X } )  =  {  .0.  } ) )
157, 14impbid 191 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( N `  { X } )  =  {  .0.  }  <->  X  =  .0.  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   {csn 3877   ` cfv 5418   Basecbs 14174   0gc0g 14378   LModclmod 16948   LSpanclspn 17052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-recs 6832  df-rdg 6866  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-2 10380  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-plusg 14251  df-0g 14380  df-mnd 15415  df-grp 15545  df-mgp 16592  df-rng 16647  df-lmod 16950  df-lss 17014  df-lsp 17053
This theorem is referenced by:  lspsneq0b  17094  lsatn0  32644  lsator0sp  32646  lsat0cv  32678  dih0vbN  34927  dihlspsnat  34978  mapdn0  35314  mapdindp1  35365  hdmapeq0  35492
  Copyright terms: Public domain W3C validator