MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnel6 Structured version   Unicode version

Theorem lspsnel6 17766
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lspsnel5.v  |-  V  =  ( Base `  W
)
lspsnel5.s  |-  S  =  ( LSubSp `  W )
lspsnel5.n  |-  N  =  ( LSpan `  W )
lspsnel5.w  |-  ( ph  ->  W  e.  LMod )
lspsnel5.a  |-  ( ph  ->  U  e.  S )
Assertion
Ref Expression
lspsnel6  |-  ( ph  ->  ( X  e.  U  <->  ( X  e.  V  /\  ( N `  { X } )  C_  U
) ) )

Proof of Theorem lspsnel6
StepHypRef Expression
1 lspsnel5.a . . . 4  |-  ( ph  ->  U  e.  S )
2 lspsnel5.v . . . . 5  |-  V  =  ( Base `  W
)
3 lspsnel5.s . . . . 5  |-  S  =  ( LSubSp `  W )
42, 3lssel 17710 . . . 4  |-  ( ( U  e.  S  /\  X  e.  U )  ->  X  e.  V )
51, 4sylan 471 . . 3  |-  ( (
ph  /\  X  e.  U )  ->  X  e.  V )
6 lspsnel5.w . . . . 5  |-  ( ph  ->  W  e.  LMod )
76adantr 465 . . . 4  |-  ( (
ph  /\  X  e.  U )  ->  W  e.  LMod )
81adantr 465 . . . 4  |-  ( (
ph  /\  X  e.  U )  ->  U  e.  S )
9 simpr 461 . . . 4  |-  ( (
ph  /\  X  e.  U )  ->  X  e.  U )
10 lspsnel5.n . . . . 5  |-  N  =  ( LSpan `  W )
113, 10lspsnss 17762 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  X  e.  U )  ->  ( N `  { X } )  C_  U
)
127, 8, 9, 11syl3anc 1228 . . 3  |-  ( (
ph  /\  X  e.  U )  ->  ( N `  { X } )  C_  U
)
135, 12jca 532 . 2  |-  ( (
ph  /\  X  e.  U )  ->  ( X  e.  V  /\  ( N `  { X } )  C_  U
) )
142, 10lspsnid 17765 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  ( N `  { X } ) )
156, 14sylan 471 . . . 4  |-  ( (
ph  /\  X  e.  V )  ->  X  e.  ( N `  { X } ) )
16 ssel 3493 . . . 4  |-  ( ( N `  { X } )  C_  U  ->  ( X  e.  ( N `  { X } )  ->  X  e.  U ) )
1715, 16syl5com 30 . . 3  |-  ( (
ph  /\  X  e.  V )  ->  (
( N `  { X } )  C_  U  ->  X  e.  U ) )
1817impr 619 . 2  |-  ( (
ph  /\  ( X  e.  V  /\  ( N `  { X } )  C_  U
) )  ->  X  e.  U )
1913, 18impbida 832 1  |-  ( ph  ->  ( X  e.  U  <->  ( X  e.  V  /\  ( N `  { X } )  C_  U
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819    C_ wss 3471   {csn 4032   ` cfv 5594   Basecbs 14643   LModclmod 17638   LSubSpclss 17704   LSpanclspn 17743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-0g 14858  df-mgm 15998  df-sgrp 16037  df-mnd 16047  df-grp 16183  df-lmod 17640  df-lss 17705  df-lsp 17744
This theorem is referenced by:  lspsnel5  17767  lsmelval2  17857  dihjat1lem  37256
  Copyright terms: Public domain W3C validator