MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnel Structured version   Unicode version

Theorem lspsnel 17847
Description: Member of span of the singleton of a vector. (elspansn 26685 analog.) (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsn.f  |-  F  =  (Scalar `  W )
lspsn.k  |-  K  =  ( Base `  F
)
lspsn.v  |-  V  =  ( Base `  W
)
lspsn.t  |-  .x.  =  ( .s `  W )
lspsn.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspsnel  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( U  e.  ( N `  { X } )  <->  E. k  e.  K  U  =  ( k  .x.  X ) ) )
Distinct variable groups:    k, F    k, K    k, N    U, k    k, V    k, W    .x. , k    k, X

Proof of Theorem lspsnel
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 lspsn.f . . . 4  |-  F  =  (Scalar `  W )
2 lspsn.k . . . 4  |-  K  =  ( Base `  F
)
3 lspsn.v . . . 4  |-  V  =  ( Base `  W
)
4 lspsn.t . . . 4  |-  .x.  =  ( .s `  W )
5 lspsn.n . . . 4  |-  N  =  ( LSpan `  W )
61, 2, 3, 4, 5lspsn 17846 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  =  {
v  |  E. k  e.  K  v  =  ( k  .x.  X
) } )
76eleq2d 2524 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( U  e.  ( N `  { X } )  <-> 
U  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } ) )
8 id 22 . . . . 5  |-  ( U  =  ( k  .x.  X )  ->  U  =  ( k  .x.  X ) )
9 ovex 6298 . . . . 5  |-  ( k 
.x.  X )  e. 
_V
108, 9syl6eqel 2550 . . . 4  |-  ( U  =  ( k  .x.  X )  ->  U  e.  _V )
1110rexlimivw 2943 . . 3  |-  ( E. k  e.  K  U  =  ( k  .x.  X )  ->  U  e.  _V )
12 eqeq1 2458 . . . 4  |-  ( v  =  U  ->  (
v  =  ( k 
.x.  X )  <->  U  =  ( k  .x.  X
) ) )
1312rexbidv 2965 . . 3  |-  ( v  =  U  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  <->  E. k  e.  K  U  =  ( k  .x.  X
) ) )
1411, 13elab3 3250 . 2  |-  ( U  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  U  =  ( k  .x.  X
) )
157, 14syl6bb 261 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( U  e.  ( N `  { X } )  <->  E. k  e.  K  U  =  ( k  .x.  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   {cab 2439   E.wrex 2805   _Vcvv 3106   {csn 4016   ` cfv 5570  (class class class)co 6270   Basecbs 14719  Scalarcsca 14790   .scvsca 14791   LModclmod 17710   LSpanclspn 17815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-ndx 14722  df-slot 14723  df-base 14724  df-sets 14725  df-plusg 14800  df-0g 14934  df-mgm 16074  df-sgrp 16113  df-mnd 16123  df-grp 16259  df-minusg 16260  df-sbg 16261  df-mgp 17340  df-ur 17352  df-ring 17398  df-lmod 17712  df-lss 17777  df-lsp 17816
This theorem is referenced by:  lspsnss2  17849  lsmspsn  17928  lspsneleq  17959  lspsneq  17966  lspdisj  17969  rspsn  18100  lshpdisj  35128  lshpsmreu  35250  lkrlspeqN  35312  lcfl7lem  37642  lcfrvalsnN  37684  mapdpglem3  37818  hdmapglem7a  38073
  Copyright terms: Public domain W3C validator