MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnel Structured version   Unicode version

Theorem lspsnel 17190
Description: Member of span of the singleton of a vector. (elspansn 25104 analog.) (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsn.f  |-  F  =  (Scalar `  W )
lspsn.k  |-  K  =  ( Base `  F
)
lspsn.v  |-  V  =  ( Base `  W
)
lspsn.t  |-  .x.  =  ( .s `  W )
lspsn.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspsnel  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( U  e.  ( N `  { X } )  <->  E. k  e.  K  U  =  ( k  .x.  X ) ) )
Distinct variable groups:    k, F    k, K    k, N    U, k    k, V    k, W    .x. , k    k, X

Proof of Theorem lspsnel
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 lspsn.f . . . 4  |-  F  =  (Scalar `  W )
2 lspsn.k . . . 4  |-  K  =  ( Base `  F
)
3 lspsn.v . . . 4  |-  V  =  ( Base `  W
)
4 lspsn.t . . . 4  |-  .x.  =  ( .s `  W )
5 lspsn.n . . . 4  |-  N  =  ( LSpan `  W )
61, 2, 3, 4, 5lspsn 17189 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  =  {
v  |  E. k  e.  K  v  =  ( k  .x.  X
) } )
76eleq2d 2521 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( U  e.  ( N `  { X } )  <-> 
U  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } ) )
8 id 22 . . . . 5  |-  ( U  =  ( k  .x.  X )  ->  U  =  ( k  .x.  X ) )
9 ovex 6215 . . . . 5  |-  ( k 
.x.  X )  e. 
_V
108, 9syl6eqel 2547 . . . 4  |-  ( U  =  ( k  .x.  X )  ->  U  e.  _V )
1110rexlimivw 2933 . . 3  |-  ( E. k  e.  K  U  =  ( k  .x.  X )  ->  U  e.  _V )
12 eqeq1 2455 . . . 4  |-  ( v  =  U  ->  (
v  =  ( k 
.x.  X )  <->  U  =  ( k  .x.  X
) ) )
1312rexbidv 2844 . . 3  |-  ( v  =  U  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  <->  E. k  e.  K  U  =  ( k  .x.  X
) ) )
1411, 13elab3 3210 . 2  |-  ( U  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  U  =  ( k  .x.  X
) )
157, 14syl6bb 261 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( U  e.  ( N `  { X } )  <->  E. k  e.  K  U  =  ( k  .x.  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   {cab 2436   E.wrex 2796   _Vcvv 3068   {csn 3975   ` cfv 5516  (class class class)co 6190   Basecbs 14276  Scalarcsca 14343   .scvsca 14344   LModclmod 17054   LSpanclspn 17158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-cnex 9439  ax-resscn 9440  ax-1cn 9441  ax-icn 9442  ax-addcl 9443  ax-addrcl 9444  ax-mulcl 9445  ax-mulrcl 9446  ax-mulcom 9447  ax-addass 9448  ax-mulass 9449  ax-distr 9450  ax-i2m1 9451  ax-1ne0 9452  ax-1rid 9453  ax-rnegex 9454  ax-rrecex 9455  ax-cnre 9456  ax-pre-lttri 9457  ax-pre-lttrn 9458  ax-pre-ltadd 9459  ax-pre-mulgt0 9460
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-int 4227  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-om 6577  df-1st 6677  df-2nd 6678  df-recs 6932  df-rdg 6966  df-er 7201  df-en 7411  df-dom 7412  df-sdom 7413  df-pnf 9521  df-mnf 9522  df-xr 9523  df-ltxr 9524  df-le 9525  df-sub 9698  df-neg 9699  df-nn 10424  df-2 10481  df-ndx 14279  df-slot 14280  df-base 14281  df-sets 14282  df-plusg 14353  df-0g 14482  df-mnd 15517  df-grp 15647  df-minusg 15648  df-sbg 15649  df-mgp 16697  df-ur 16709  df-rng 16753  df-lmod 17056  df-lss 17120  df-lsp 17159
This theorem is referenced by:  lspsnss2  17192  lsmspsn  17271  lspsneleq  17302  lspsneq  17309  lspdisj  17312  rspsn  17442  lshpdisj  32938  lshpsmreu  33060  lkrlspeqN  33122  lcfl7lem  35450  lcfrvalsnN  35492  mapdpglem3  35626  hdmapglem7a  35881
  Copyright terms: Public domain W3C validator