MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsn Structured version   Unicode version

Theorem lspsn 17843
Description: Span of the singleton of a vector. (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsn.f  |-  F  =  (Scalar `  W )
lspsn.k  |-  K  =  ( Base `  F
)
lspsn.v  |-  V  =  ( Base `  W
)
lspsn.t  |-  .x.  =  ( .s `  W )
lspsn.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspsn  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  =  {
v  |  E. k  e.  K  v  =  ( k  .x.  X
) } )
Distinct variable groups:    k, F    v, k, K    k, N, v    k, V, v    k, W, v    .x. , k, v   
k, X, v
Allowed substitution hint:    F( v)

Proof of Theorem lspsn
StepHypRef Expression
1 eqid 2454 . . 3  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
2 lspsn.n . . 3  |-  N  =  ( LSpan `  W )
3 simpl 455 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  W  e.  LMod )
4 lspsn.v . . . 4  |-  V  =  ( Base `  W
)
5 lspsn.f . . . 4  |-  F  =  (Scalar `  W )
6 lspsn.t . . . 4  |-  .x.  =  ( .s `  W )
7 lspsn.k . . . 4  |-  K  =  ( Base `  F
)
84, 5, 6, 7, 1lss1d 17804 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  e.  ( LSubSp `  W ) )
9 eqid 2454 . . . . . . 7  |-  ( 1r
`  F )  =  ( 1r `  F
)
105, 7, 9lmod1cl 17734 . . . . . 6  |-  ( W  e.  LMod  ->  ( 1r
`  F )  e.  K )
1110adantr 463 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( 1r `  F )  e.  K )
124, 5, 6, 9lmodvs1 17735 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( 1r `  F
)  .x.  X )  =  X )
1312eqcomd 2462 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  =  ( ( 1r
`  F )  .x.  X ) )
14 oveq1 6277 . . . . . . 7  |-  ( k  =  ( 1r `  F )  ->  (
k  .x.  X )  =  ( ( 1r
`  F )  .x.  X ) )
1514eqeq2d 2468 . . . . . 6  |-  ( k  =  ( 1r `  F )  ->  ( X  =  ( k  .x.  X )  <->  X  =  ( ( 1r `  F )  .x.  X
) ) )
1615rspcev 3207 . . . . 5  |-  ( ( ( 1r `  F
)  e.  K  /\  X  =  ( ( 1r `  F )  .x.  X ) )  ->  E. k  e.  K  X  =  ( k  .x.  X ) )
1711, 13, 16syl2anc 659 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  E. k  e.  K  X  =  ( k  .x.  X
) )
18 eqeq1 2458 . . . . . . 7  |-  ( v  =  X  ->  (
v  =  ( k 
.x.  X )  <->  X  =  ( k  .x.  X
) ) )
1918rexbidv 2965 . . . . . 6  |-  ( v  =  X  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  <->  E. k  e.  K  X  =  ( k  .x.  X
) ) )
2019elabg 3244 . . . . 5  |-  ( X  e.  V  ->  ( X  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  X  =  ( k  .x.  X
) ) )
2120adantl 464 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( X  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  X  =  ( k  .x.  X
) ) )
2217, 21mpbird 232 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )
231, 2, 3, 8, 22lspsnel5a 17837 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  C_  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )
243adantr 463 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  W  e.  LMod )
254, 1, 2lspsncl 17818 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  e.  (
LSubSp `  W ) )
2625adantr 463 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  ( N `  { X } )  e.  ( LSubSp `  W
) )
27 simpr 459 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  k  e.  K )
284, 2lspsnid 17834 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  ( N `  { X } ) )
2928adantr 463 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  X  e.  ( N `  { X } ) )
305, 6, 7, 1lssvscl 17796 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  ( N `  { X } )  e.  (
LSubSp `  W ) )  /\  ( k  e.  K  /\  X  e.  ( N `  { X } ) ) )  ->  ( k  .x.  X )  e.  ( N `  { X } ) )
3124, 26, 27, 29, 30syl22anc 1227 . . . . 5  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  ( k  .x.  X )  e.  ( N `  { X } ) )
32 eleq1a 2537 . . . . 5  |-  ( ( k  .x.  X )  e.  ( N `  { X } )  -> 
( v  =  ( k  .x.  X )  ->  v  e.  ( N `  { X } ) ) )
3331, 32syl 16 . . . 4  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  ( v  =  ( k  .x.  X )  ->  v  e.  ( N `  { X } ) ) )
3433rexlimdva 2946 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  ->  v  e.  ( N `  { X } ) ) )
3534abssdv 3560 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  C_  ( N `  { X } ) )
3623, 35eqssd 3506 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  =  {
v  |  E. k  e.  K  v  =  ( k  .x.  X
) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   {cab 2439   E.wrex 2805   {csn 4016   ` cfv 5570  (class class class)co 6270   Basecbs 14716  Scalarcsca 14787   .scvsca 14788   1rcur 17348   LModclmod 17707   LSubSpclss 17773   LSpanclspn 17812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-plusg 14797  df-0g 14931  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-grp 16256  df-minusg 16257  df-sbg 16258  df-mgp 17337  df-ur 17349  df-ring 17395  df-lmod 17709  df-lss 17774  df-lsp 17813
This theorem is referenced by:  lspsnel  17844  rnascl  18187  ldual1dim  35288  dia1dim2  37186  dib1dim2  37292  diclspsn  37318  dih1dimatlem  37453
  Copyright terms: Public domain W3C validator