MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsn Structured version   Unicode version

Theorem lspsn 17095
Description: Span of the singleton of a vector. (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsn.f  |-  F  =  (Scalar `  W )
lspsn.k  |-  K  =  ( Base `  F
)
lspsn.v  |-  V  =  ( Base `  W
)
lspsn.t  |-  .x.  =  ( .s `  W )
lspsn.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspsn  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  =  {
v  |  E. k  e.  K  v  =  ( k  .x.  X
) } )
Distinct variable groups:    k, F    v, k, K    k, N, v    k, V, v    k, W, v    .x. , k, v   
k, X, v
Allowed substitution hint:    F( v)

Proof of Theorem lspsn
StepHypRef Expression
1 eqid 2443 . . 3  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
2 lspsn.n . . 3  |-  N  =  ( LSpan `  W )
3 simpl 457 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  W  e.  LMod )
4 lspsn.v . . . 4  |-  V  =  ( Base `  W
)
5 lspsn.f . . . 4  |-  F  =  (Scalar `  W )
6 lspsn.t . . . 4  |-  .x.  =  ( .s `  W )
7 lspsn.k . . . 4  |-  K  =  ( Base `  F
)
84, 5, 6, 7, 1lss1d 17056 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  e.  ( LSubSp `  W ) )
9 eqid 2443 . . . . . . 7  |-  ( 1r
`  F )  =  ( 1r `  F
)
105, 7, 9lmod1cl 16987 . . . . . 6  |-  ( W  e.  LMod  ->  ( 1r
`  F )  e.  K )
1110adantr 465 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( 1r `  F )  e.  K )
124, 5, 6, 9lmodvs1 16988 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( 1r `  F
)  .x.  X )  =  X )
1312eqcomd 2448 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  =  ( ( 1r
`  F )  .x.  X ) )
14 oveq1 6110 . . . . . . 7  |-  ( k  =  ( 1r `  F )  ->  (
k  .x.  X )  =  ( ( 1r
`  F )  .x.  X ) )
1514eqeq2d 2454 . . . . . 6  |-  ( k  =  ( 1r `  F )  ->  ( X  =  ( k  .x.  X )  <->  X  =  ( ( 1r `  F )  .x.  X
) ) )
1615rspcev 3085 . . . . 5  |-  ( ( ( 1r `  F
)  e.  K  /\  X  =  ( ( 1r `  F )  .x.  X ) )  ->  E. k  e.  K  X  =  ( k  .x.  X ) )
1711, 13, 16syl2anc 661 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  E. k  e.  K  X  =  ( k  .x.  X
) )
18 eqeq1 2449 . . . . . . 7  |-  ( v  =  X  ->  (
v  =  ( k 
.x.  X )  <->  X  =  ( k  .x.  X
) ) )
1918rexbidv 2748 . . . . . 6  |-  ( v  =  X  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  <->  E. k  e.  K  X  =  ( k  .x.  X
) ) )
2019elabg 3119 . . . . 5  |-  ( X  e.  V  ->  ( X  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  X  =  ( k  .x.  X
) ) )
2120adantl 466 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( X  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  X  =  ( k  .x.  X
) ) )
2217, 21mpbird 232 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )
231, 2, 3, 8, 22lspsnel5a 17089 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  C_  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )
243adantr 465 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  W  e.  LMod )
254, 1, 2lspsncl 17070 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  e.  (
LSubSp `  W ) )
2625adantr 465 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  ( N `  { X } )  e.  ( LSubSp `  W
) )
27 simpr 461 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  k  e.  K )
284, 2lspsnid 17086 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  ( N `  { X } ) )
2928adantr 465 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  X  e.  ( N `  { X } ) )
305, 6, 7, 1lssvscl 17048 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  ( N `  { X } )  e.  (
LSubSp `  W ) )  /\  ( k  e.  K  /\  X  e.  ( N `  { X } ) ) )  ->  ( k  .x.  X )  e.  ( N `  { X } ) )
3124, 26, 27, 29, 30syl22anc 1219 . . . . 5  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  ( k  .x.  X )  e.  ( N `  { X } ) )
32 eleq1a 2512 . . . . 5  |-  ( ( k  .x.  X )  e.  ( N `  { X } )  -> 
( v  =  ( k  .x.  X )  ->  v  e.  ( N `  { X } ) ) )
3331, 32syl 16 . . . 4  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  ( v  =  ( k  .x.  X )  ->  v  e.  ( N `  { X } ) ) )
3433rexlimdva 2853 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  ->  v  e.  ( N `  { X } ) ) )
3534abssdv 3438 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  C_  ( N `  { X } ) )
3623, 35eqssd 3385 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  =  {
v  |  E. k  e.  K  v  =  ( k  .x.  X
) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   {cab 2429   E.wrex 2728   {csn 3889   ` cfv 5430  (class class class)co 6103   Basecbs 14186  Scalarcsca 14253   .scvsca 14254   1rcur 16615   LModclmod 16960   LSubSpclss 17025   LSpanclspn 17064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-1st 6589  df-2nd 6590  df-recs 6844  df-rdg 6878  df-er 7113  df-en 7323  df-dom 7324  df-sdom 7325  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-nn 10335  df-2 10392  df-ndx 14189  df-slot 14190  df-base 14191  df-sets 14192  df-plusg 14263  df-0g 14392  df-mnd 15427  df-grp 15557  df-minusg 15558  df-sbg 15559  df-mgp 16604  df-ur 16616  df-rng 16659  df-lmod 16962  df-lss 17026  df-lsp 17065
This theorem is referenced by:  lspsnel  17096  rnascl  17425  ldual1dim  32823  dia1dim2  34719  dib1dim2  34825  diclspsn  34851  dih1dimatlem  34986
  Copyright terms: Public domain W3C validator