MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppropd Structured version   Unicode version

Theorem lsppropd 18246
Description: If two structures have the same components (properties), they have the same span function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
lsspropd.b1  |-  ( ph  ->  B  =  ( Base `  K ) )
lsspropd.b2  |-  ( ph  ->  B  =  ( Base `  L ) )
lsspropd.w  |-  ( ph  ->  B  C_  W )
lsspropd.p  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
lsspropd.s1  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  e.  W )
lsspropd.s2  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  =  ( x ( .s `  L
) y ) )
lsspropd.p1  |-  ( ph  ->  P  =  ( Base `  (Scalar `  K )
) )
lsspropd.p2  |-  ( ph  ->  P  =  ( Base `  (Scalar `  L )
) )
lsspropd.v1  |-  ( ph  ->  K  e.  _V )
lsspropd.v2  |-  ( ph  ->  L  e.  _V )
Assertion
Ref Expression
lsppropd  |-  ( ph  ->  ( LSpan `  K )  =  ( LSpan `  L
) )
Distinct variable groups:    x, y, B    x, K, y    ph, x, y    x, W, y    x, L, y    x, P, y

Proof of Theorem lsppropd
Dummy variables  s 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsspropd.b1 . . . . 5  |-  ( ph  ->  B  =  ( Base `  K ) )
2 lsspropd.b2 . . . . 5  |-  ( ph  ->  B  =  ( Base `  L ) )
31, 2eqtr3d 2466 . . . 4  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
43pweqd 3992 . . 3  |-  ( ph  ->  ~P ( Base `  K
)  =  ~P ( Base `  L ) )
5 lsspropd.w . . . . . 6  |-  ( ph  ->  B  C_  W )
6 lsspropd.p . . . . . 6  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
7 lsspropd.s1 . . . . . 6  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  e.  W )
8 lsspropd.s2 . . . . . 6  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  =  ( x ( .s `  L
) y ) )
9 lsspropd.p1 . . . . . 6  |-  ( ph  ->  P  =  ( Base `  (Scalar `  K )
) )
10 lsspropd.p2 . . . . . 6  |-  ( ph  ->  P  =  ( Base `  (Scalar `  L )
) )
111, 2, 5, 6, 7, 8, 9, 10lsspropd 18245 . . . . 5  |-  ( ph  ->  ( LSubSp `  K )  =  ( LSubSp `  L
) )
12 rabeq 3078 . . . . 5  |-  ( (
LSubSp `  K )  =  ( LSubSp `  L )  ->  { t  e.  (
LSubSp `  K )  |  s  C_  t }  =  { t  e.  (
LSubSp `  L )  |  s  C_  t }
)
1311, 12syl 17 . . . 4  |-  ( ph  ->  { t  e.  (
LSubSp `  K )  |  s  C_  t }  =  { t  e.  (
LSubSp `  L )  |  s  C_  t }
)
1413inteqd 4266 . . 3  |-  ( ph  ->  |^| { t  e.  ( LSubSp `  K )  |  s  C_  t }  =  |^| { t  e.  ( LSubSp `  L
)  |  s  C_  t } )
154, 14mpteq12dv 4508 . 2  |-  ( ph  ->  ( s  e.  ~P ( Base `  K )  |-> 
|^| { t  e.  (
LSubSp `  K )  |  s  C_  t }
)  =  ( s  e.  ~P ( Base `  L )  |->  |^| { t  e.  ( LSubSp `  L
)  |  s  C_  t } ) )
16 lsspropd.v1 . . 3  |-  ( ph  ->  K  e.  _V )
17 eqid 2423 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
18 eqid 2423 . . . 4  |-  ( LSubSp `  K )  =  (
LSubSp `  K )
19 eqid 2423 . . . 4  |-  ( LSpan `  K )  =  (
LSpan `  K )
2017, 18, 19lspfval 18201 . . 3  |-  ( K  e.  _V  ->  ( LSpan `  K )  =  ( s  e.  ~P ( Base `  K )  |-> 
|^| { t  e.  (
LSubSp `  K )  |  s  C_  t }
) )
2116, 20syl 17 . 2  |-  ( ph  ->  ( LSpan `  K )  =  ( s  e. 
~P ( Base `  K
)  |->  |^| { t  e.  ( LSubSp `  K )  |  s  C_  t } ) )
22 lsspropd.v2 . . 3  |-  ( ph  ->  L  e.  _V )
23 eqid 2423 . . . 4  |-  ( Base `  L )  =  (
Base `  L )
24 eqid 2423 . . . 4  |-  ( LSubSp `  L )  =  (
LSubSp `  L )
25 eqid 2423 . . . 4  |-  ( LSpan `  L )  =  (
LSpan `  L )
2623, 24, 25lspfval 18201 . . 3  |-  ( L  e.  _V  ->  ( LSpan `  L )  =  ( s  e.  ~P ( Base `  L )  |-> 
|^| { t  e.  (
LSubSp `  L )  |  s  C_  t }
) )
2722, 26syl 17 . 2  |-  ( ph  ->  ( LSpan `  L )  =  ( s  e. 
~P ( Base `  L
)  |->  |^| { t  e.  ( LSubSp `  L )  |  s  C_  t } ) )
2815, 21, 273eqtr4d 2474 1  |-  ( ph  ->  ( LSpan `  K )  =  ( LSpan `  L
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    = wceq 1438    e. wcel 1873   {crab 2780   _Vcvv 3085    C_ wss 3442   ~Pcpw 3987   |^|cint 4261    |-> cmpt 4488   ` cfv 5607  (class class class)co 6311   Basecbs 15126   +g cplusg 15195  Scalarcsca 15198   .scvsca 15199   LSubSpclss 18160   LSpanclspn 18199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1664  ax-4 1677  ax-5 1753  ax-6 1799  ax-7 1844  ax-8 1875  ax-9 1877  ax-10 1892  ax-11 1897  ax-12 1910  ax-13 2058  ax-ext 2402  ax-rep 4542  ax-sep 4552  ax-nul 4561  ax-pow 4608  ax-pr 4666
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 985  df-tru 1441  df-ex 1659  df-nf 1663  df-sb 1792  df-eu 2274  df-mo 2275  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-ral 2781  df-rex 2782  df-reu 2783  df-rab 2785  df-v 3087  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3918  df-pw 3989  df-sn 4005  df-pr 4007  df-op 4011  df-uni 4226  df-int 4262  df-iun 4307  df-br 4430  df-opab 4489  df-mpt 4490  df-id 4774  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-rn 4870  df-res 4871  df-ima 4872  df-iota 5571  df-fun 5609  df-fn 5610  df-f 5611  df-f1 5612  df-fo 5613  df-f1o 5614  df-fv 5615  df-ov 6314  df-lss 18161  df-lsp 18200
This theorem is referenced by:  lbspropd  18327  lidlrsppropd  18459
  Copyright terms: Public domain W3C validator