MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppratlem6 Structured version   Visualization version   Unicode version

Theorem lsppratlem6 18453
Description: Lemma for lspprat 18454. Negating the assumption on  y, we arrive close to the desired conclusion. (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lspprat.v  |-  V  =  ( Base `  W
)
lspprat.s  |-  S  =  ( LSubSp `  W )
lspprat.n  |-  N  =  ( LSpan `  W )
lspprat.w  |-  ( ph  ->  W  e.  LVec )
lspprat.u  |-  ( ph  ->  U  e.  S )
lspprat.x  |-  ( ph  ->  X  e.  V )
lspprat.y  |-  ( ph  ->  Y  e.  V )
lspprat.p  |-  ( ph  ->  U  C.  ( N `  { X ,  Y } ) )
lsppratlem6.o  |-  .0.  =  ( 0g `  W )
Assertion
Ref Expression
lsppratlem6  |-  ( ph  ->  ( x  e.  ( U  \  {  .0.  } )  ->  U  =  ( N `  { x } ) ) )

Proof of Theorem lsppratlem6
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 lspprat.p . . . . . . 7  |-  ( ph  ->  U  C.  ( N `  { X ,  Y } ) )
21adantr 472 . . . . . 6  |-  ( (
ph  /\  x  e.  ( U  \  {  .0.  } ) )  ->  U  C.  ( N `  { X ,  Y }
) )
3 lspprat.v . . . . . . . . 9  |-  V  =  ( Base `  W
)
4 lspprat.s . . . . . . . . 9  |-  S  =  ( LSubSp `  W )
5 lspprat.n . . . . . . . . 9  |-  N  =  ( LSpan `  W )
6 lspprat.w . . . . . . . . . 10  |-  ( ph  ->  W  e.  LVec )
76adantr 472 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( U  \  {  .0.  } )  /\  y  e.  ( U  \  ( N `  { x } ) ) ) )  ->  W  e.  LVec )
8 lspprat.u . . . . . . . . . 10  |-  ( ph  ->  U  e.  S )
98adantr 472 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( U  \  {  .0.  } )  /\  y  e.  ( U  \  ( N `  { x } ) ) ) )  ->  U  e.  S )
10 lspprat.x . . . . . . . . . 10  |-  ( ph  ->  X  e.  V )
1110adantr 472 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( U  \  {  .0.  } )  /\  y  e.  ( U  \  ( N `  { x } ) ) ) )  ->  X  e.  V )
12 lspprat.y . . . . . . . . . 10  |-  ( ph  ->  Y  e.  V )
1312adantr 472 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( U  \  {  .0.  } )  /\  y  e.  ( U  \  ( N `  { x } ) ) ) )  ->  Y  e.  V )
141adantr 472 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( U  \  {  .0.  } )  /\  y  e.  ( U  \  ( N `  { x } ) ) ) )  ->  U  C.  ( N `  { X ,  Y } ) )
15 lsppratlem6.o . . . . . . . . 9  |-  .0.  =  ( 0g `  W )
16 simprl 772 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( U  \  {  .0.  } )  /\  y  e.  ( U  \  ( N `  { x } ) ) ) )  ->  x  e.  ( U  \  {  .0.  } ) )
17 simprr 774 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( U  \  {  .0.  } )  /\  y  e.  ( U  \  ( N `  { x } ) ) ) )  ->  y  e.  ( U  \  ( N `  { x } ) ) )
183, 4, 5, 7, 9, 11, 13, 14, 15, 16, 17lsppratlem5 18452 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( U  \  {  .0.  } )  /\  y  e.  ( U  \  ( N `  { x } ) ) ) )  ->  ( N `  { X ,  Y } )  C_  U
)
19 ssnpss 3522 . . . . . . . 8  |-  ( ( N `  { X ,  Y } )  C_  U  ->  -.  U  C.  ( N `  { X ,  Y } ) )
2018, 19syl 17 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( U  \  {  .0.  } )  /\  y  e.  ( U  \  ( N `  { x } ) ) ) )  ->  -.  U  C.  ( N `  { X ,  Y }
) )
2120expr 626 . . . . . 6  |-  ( (
ph  /\  x  e.  ( U  \  {  .0.  } ) )  ->  (
y  e.  ( U 
\  ( N `  { x } ) )  ->  -.  U  C.  ( N `  { X ,  Y }
) ) )
222, 21mt2d 121 . . . . 5  |-  ( (
ph  /\  x  e.  ( U  \  {  .0.  } ) )  ->  -.  y  e.  ( U  \  ( N `  {
x } ) ) )
2322eq0rdv 3773 . . . 4  |-  ( (
ph  /\  x  e.  ( U  \  {  .0.  } ) )  ->  ( U  \  ( N `  { x } ) )  =  (/) )
24 ssdif0 3741 . . . 4  |-  ( U 
C_  ( N `  { x } )  <-> 
( U  \  ( N `  { x } ) )  =  (/) )
2523, 24sylibr 217 . . 3  |-  ( (
ph  /\  x  e.  ( U  \  {  .0.  } ) )  ->  U  C_  ( N `  {
x } ) )
26 lveclmod 18407 . . . . . 6  |-  ( W  e.  LVec  ->  W  e. 
LMod )
276, 26syl 17 . . . . 5  |-  ( ph  ->  W  e.  LMod )
2827adantr 472 . . . 4  |-  ( (
ph  /\  x  e.  ( U  \  {  .0.  } ) )  ->  W  e.  LMod )
298adantr 472 . . . 4  |-  ( (
ph  /\  x  e.  ( U  \  {  .0.  } ) )  ->  U  e.  S )
30 eldifi 3544 . . . . 5  |-  ( x  e.  ( U  \  {  .0.  } )  ->  x  e.  U )
3130adantl 473 . . . 4  |-  ( (
ph  /\  x  e.  ( U  \  {  .0.  } ) )  ->  x  e.  U )
324, 5, 28, 29, 31lspsnel5a 18297 . . 3  |-  ( (
ph  /\  x  e.  ( U  \  {  .0.  } ) )  ->  ( N `  { x } )  C_  U
)
3325, 32eqssd 3435 . 2  |-  ( (
ph  /\  x  e.  ( U  \  {  .0.  } ) )  ->  U  =  ( N `  { x } ) )
3433ex 441 1  |-  ( ph  ->  ( x  e.  ( U  \  {  .0.  } )  ->  U  =  ( N `  { x } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 376    = wceq 1452    e. wcel 1904    \ cdif 3387    C_ wss 3390    C. wpss 3391   (/)c0 3722   {csn 3959   {cpr 3961   ` cfv 5589   Basecbs 15199   0gc0g 15416   LModclmod 18169   LSubSpclss 18233   LSpanclspn 18272   LVecclvec 18403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-tpos 6991  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-2 10690  df-3 10691  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-0g 15418  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-grp 16751  df-minusg 16752  df-sbg 16753  df-cmn 17510  df-abl 17511  df-mgp 17802  df-ur 17814  df-ring 17860  df-oppr 17929  df-dvdsr 17947  df-unit 17948  df-invr 17978  df-drng 18055  df-lmod 18171  df-lss 18234  df-lsp 18273  df-lvec 18404
This theorem is referenced by:  lspprat  18454
  Copyright terms: Public domain W3C validator