MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppratlem4 Structured version   Unicode version

Theorem lsppratlem4 17991
Description: Lemma for lspprat 17994. In the second case of lsppratlem1 17988,  y  e.  ( N `  { X ,  Y } )  C_  ( N `  { x ,  Y } ) and  y  e/  ( N `  { x } ) implies  Y  e.  ( N `  { x ,  y } ) and thus  X  e.  ( N `  { x ,  Y } )  C_  ( N `  { x ,  y } ) as well. (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lspprat.v  |-  V  =  ( Base `  W
)
lspprat.s  |-  S  =  ( LSubSp `  W )
lspprat.n  |-  N  =  ( LSpan `  W )
lspprat.w  |-  ( ph  ->  W  e.  LVec )
lspprat.u  |-  ( ph  ->  U  e.  S )
lspprat.x  |-  ( ph  ->  X  e.  V )
lspprat.y  |-  ( ph  ->  Y  e.  V )
lspprat.p  |-  ( ph  ->  U  C.  ( N `  { X ,  Y } ) )
lsppratlem1.o  |-  .0.  =  ( 0g `  W )
lsppratlem1.x2  |-  ( ph  ->  x  e.  ( U 
\  {  .0.  }
) )
lsppratlem1.y2  |-  ( ph  ->  y  e.  ( U 
\  ( N `  { x } ) ) )
lsppratlem4.x3  |-  ( ph  ->  X  e.  ( N `
 { x ,  Y } ) )
Assertion
Ref Expression
lsppratlem4  |-  ( ph  ->  ( X  e.  ( N `  { x ,  y } )  /\  Y  e.  ( N `  { x ,  y } ) ) )

Proof of Theorem lsppratlem4
StepHypRef Expression
1 lspprat.w . . . . 5  |-  ( ph  ->  W  e.  LVec )
2 lveclmod 17947 . . . . 5  |-  ( W  e.  LVec  ->  W  e. 
LMod )
31, 2syl 16 . . . 4  |-  ( ph  ->  W  e.  LMod )
4 lspprat.v . . . . 5  |-  V  =  ( Base `  W
)
5 lspprat.s . . . . 5  |-  S  =  ( LSubSp `  W )
6 lspprat.n . . . . 5  |-  N  =  ( LSpan `  W )
7 lspprat.u . . . . . . . 8  |-  ( ph  ->  U  e.  S )
84, 5lssss 17778 . . . . . . . 8  |-  ( U  e.  S  ->  U  C_  V )
97, 8syl 16 . . . . . . 7  |-  ( ph  ->  U  C_  V )
109ssdifssd 3628 . . . . . 6  |-  ( ph  ->  ( U  \  {  .0.  } )  C_  V
)
11 lsppratlem1.x2 . . . . . 6  |-  ( ph  ->  x  e.  ( U 
\  {  .0.  }
) )
1210, 11sseldd 3490 . . . . 5  |-  ( ph  ->  x  e.  V )
139ssdifssd 3628 . . . . . 6  |-  ( ph  ->  ( U  \  ( N `  { x } ) )  C_  V )
14 lsppratlem1.y2 . . . . . 6  |-  ( ph  ->  y  e.  ( U 
\  ( N `  { x } ) ) )
1513, 14sseldd 3490 . . . . 5  |-  ( ph  ->  y  e.  V )
164, 5, 6, 3, 12, 15lspprcl 17819 . . . 4  |-  ( ph  ->  ( N `  {
x ,  y } )  e.  S )
17 df-pr 4019 . . . . 5  |-  { x ,  Y }  =  ( { x }  u.  { Y } )
18 snsspr1 4165 . . . . . . 7  |-  { x }  C_  { x ,  y }
19 prssi 4172 . . . . . . . . 9  |-  ( ( x  e.  V  /\  y  e.  V )  ->  { x ,  y }  C_  V )
2012, 15, 19syl2anc 659 . . . . . . . 8  |-  ( ph  ->  { x ,  y }  C_  V )
214, 6lspssid 17826 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  {
x ,  y } 
C_  V )  ->  { x ,  y }  C_  ( N `  { x ,  y } ) )
223, 20, 21syl2anc 659 . . . . . . 7  |-  ( ph  ->  { x ,  y }  C_  ( N `  { x ,  y } ) )
2318, 22syl5ss 3500 . . . . . 6  |-  ( ph  ->  { x }  C_  ( N `  { x ,  y } ) )
2412snssd 4161 . . . . . . . . 9  |-  ( ph  ->  { x }  C_  V )
25 lspprat.y . . . . . . . . 9  |-  ( ph  ->  Y  e.  V )
26 lspprat.p . . . . . . . . . . . . . 14  |-  ( ph  ->  U  C.  ( N `  { X ,  Y } ) )
2726pssssd 3587 . . . . . . . . . . . . 13  |-  ( ph  ->  U  C_  ( N `  { X ,  Y } ) )
284, 5, 6, 3, 12, 25lspprcl 17819 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( N `  {
x ,  Y }
)  e.  S )
29 df-pr 4019 . . . . . . . . . . . . . . 15  |-  { X ,  Y }  =  ( { X }  u.  { Y } )
30 lsppratlem4.x3 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  X  e.  ( N `
 { x ,  Y } ) )
3130snssd 4161 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  { X }  C_  ( N `  { x ,  Y } ) )
32 snsspr2 4166 . . . . . . . . . . . . . . . . 17  |-  { Y }  C_  { x ,  Y }
33 prssi 4172 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  V  /\  Y  e.  V )  ->  { x ,  Y }  C_  V )
3412, 25, 33syl2anc 659 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  { x ,  Y }  C_  V )
354, 6lspssid 17826 . . . . . . . . . . . . . . . . . 18  |-  ( ( W  e.  LMod  /\  {
x ,  Y }  C_  V )  ->  { x ,  Y }  C_  ( N `  { x ,  Y } ) )
363, 34, 35syl2anc 659 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  { x ,  Y }  C_  ( N `  { x ,  Y } ) )
3732, 36syl5ss 3500 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  { Y }  C_  ( N `  { x ,  Y } ) )
3831, 37unssd 3666 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( { X }  u.  { Y } ) 
C_  ( N `  { x ,  Y } ) )
3929, 38syl5eqss 3533 . . . . . . . . . . . . . 14  |-  ( ph  ->  { X ,  Y }  C_  ( N `  { x ,  Y } ) )
405, 6lspssp 17829 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LMod  /\  ( N `  { x ,  Y } )  e.  S  /\  { X ,  Y }  C_  ( N `  { x ,  Y } ) )  ->  ( N `  { X ,  Y }
)  C_  ( N `  { x ,  Y } ) )
413, 28, 39, 40syl3anc 1226 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N `  { X ,  Y }
)  C_  ( N `  { x ,  Y } ) )
4227, 41sstrd 3499 . . . . . . . . . . . 12  |-  ( ph  ->  U  C_  ( N `  { x ,  Y } ) )
4317fveq2i 5851 . . . . . . . . . . . 12  |-  ( N `
 { x ,  Y } )  =  ( N `  ( { x }  u.  { Y } ) )
4442, 43syl6sseq 3535 . . . . . . . . . . 11  |-  ( ph  ->  U  C_  ( N `  ( { x }  u.  { Y } ) ) )
4544ssdifd 3626 . . . . . . . . . 10  |-  ( ph  ->  ( U  \  ( N `  { x } ) )  C_  ( ( N `  ( { x }  u.  { Y } ) ) 
\  ( N `  { x } ) ) )
4645, 14sseldd 3490 . . . . . . . . 9  |-  ( ph  ->  y  e.  ( ( N `  ( { x }  u.  { Y } ) )  \ 
( N `  {
x } ) ) )
474, 5, 6lspsolv 17984 . . . . . . . . 9  |-  ( ( W  e.  LVec  /\  ( { x }  C_  V  /\  Y  e.  V  /\  y  e.  (
( N `  ( { x }  u.  { Y } ) ) 
\  ( N `  { x } ) ) ) )  ->  Y  e.  ( N `  ( { x }  u.  { y } ) ) )
481, 24, 25, 46, 47syl13anc 1228 . . . . . . . 8  |-  ( ph  ->  Y  e.  ( N `
 ( { x }  u.  { y } ) ) )
49 df-pr 4019 . . . . . . . . 9  |-  { x ,  y }  =  ( { x }  u.  { y } )
5049fveq2i 5851 . . . . . . . 8  |-  ( N `
 { x ,  y } )  =  ( N `  ( { x }  u.  { y } ) )
5148, 50syl6eleqr 2553 . . . . . . 7  |-  ( ph  ->  Y  e.  ( N `
 { x ,  y } ) )
5251snssd 4161 . . . . . 6  |-  ( ph  ->  { Y }  C_  ( N `  { x ,  y } ) )
5323, 52unssd 3666 . . . . 5  |-  ( ph  ->  ( { x }  u.  { Y } ) 
C_  ( N `  { x ,  y } ) )
5417, 53syl5eqss 3533 . . . 4  |-  ( ph  ->  { x ,  Y }  C_  ( N `  { x ,  y } ) )
555, 6lspssp 17829 . . . 4  |-  ( ( W  e.  LMod  /\  ( N `  { x ,  y } )  e.  S  /\  {
x ,  Y }  C_  ( N `  {
x ,  y } ) )  ->  ( N `  { x ,  Y } )  C_  ( N `  { x ,  y } ) )
563, 16, 54, 55syl3anc 1226 . . 3  |-  ( ph  ->  ( N `  {
x ,  Y }
)  C_  ( N `  { x ,  y } ) )
5756, 30sseldd 3490 . 2  |-  ( ph  ->  X  e.  ( N `
 { x ,  y } ) )
5857, 51jca 530 1  |-  ( ph  ->  ( X  e.  ( N `  { x ,  y } )  /\  Y  e.  ( N `  { x ,  y } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823    \ cdif 3458    u. cun 3459    C_ wss 3461    C. wpss 3462   {csn 4016   {cpr 4018   ` cfv 5570   Basecbs 14716   0gc0g 14929   LModclmod 17707   LSubSpclss 17773   LSpanclspn 17812   LVecclvec 17943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-tpos 6947  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-3 10591  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-mulr 14798  df-0g 14931  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-grp 16256  df-minusg 16257  df-sbg 16258  df-cmn 16999  df-abl 17000  df-mgp 17337  df-ur 17349  df-ring 17395  df-oppr 17467  df-dvdsr 17485  df-unit 17486  df-invr 17516  df-drng 17593  df-lmod 17709  df-lss 17774  df-lsp 17813  df-lvec 17944
This theorem is referenced by:  lsppratlem5  17992
  Copyright terms: Public domain W3C validator