MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppratlem3 Structured version   Unicode version

Theorem lsppratlem3 17666
Description: Lemma for lspprat 17670. In the first case of lsppratlem1 17664, since  x  e/  ( N `  (/) ), also  Y  e.  ( N `  {
x } ), and since  y  e.  ( N `  { X ,  Y } )  C_  ( N `  { X ,  x } ) and  y  e/  ( N `  { x } ), we have  X  e.  ( N `  { x ,  y } ) as desired. (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lspprat.v  |-  V  =  ( Base `  W
)
lspprat.s  |-  S  =  ( LSubSp `  W )
lspprat.n  |-  N  =  ( LSpan `  W )
lspprat.w  |-  ( ph  ->  W  e.  LVec )
lspprat.u  |-  ( ph  ->  U  e.  S )
lspprat.x  |-  ( ph  ->  X  e.  V )
lspprat.y  |-  ( ph  ->  Y  e.  V )
lspprat.p  |-  ( ph  ->  U  C.  ( N `  { X ,  Y } ) )
lsppratlem1.o  |-  .0.  =  ( 0g `  W )
lsppratlem1.x2  |-  ( ph  ->  x  e.  ( U 
\  {  .0.  }
) )
lsppratlem1.y2  |-  ( ph  ->  y  e.  ( U 
\  ( N `  { x } ) ) )
lsppratlem3.x3  |-  ( ph  ->  x  e.  ( N `
 { Y }
) )
Assertion
Ref Expression
lsppratlem3  |-  ( ph  ->  ( X  e.  ( N `  { x ,  y } )  /\  Y  e.  ( N `  { x ,  y } ) ) )

Proof of Theorem lsppratlem3
StepHypRef Expression
1 lspprat.w . . . 4  |-  ( ph  ->  W  e.  LVec )
2 lveclmod 17623 . . . . . . . 8  |-  ( W  e.  LVec  ->  W  e. 
LMod )
31, 2syl 16 . . . . . . 7  |-  ( ph  ->  W  e.  LMod )
4 lspprat.y . . . . . . . 8  |-  ( ph  ->  Y  e.  V )
54snssd 4178 . . . . . . 7  |-  ( ph  ->  { Y }  C_  V )
6 lspprat.v . . . . . . . 8  |-  V  =  ( Base `  W
)
7 lspprat.n . . . . . . . 8  |-  N  =  ( LSpan `  W )
86, 7lspssv 17500 . . . . . . 7  |-  ( ( W  e.  LMod  /\  { Y }  C_  V )  ->  ( N `  { Y } )  C_  V )
93, 5, 8syl2anc 661 . . . . . 6  |-  ( ph  ->  ( N `  { Y } )  C_  V
)
10 lsppratlem3.x3 . . . . . 6  |-  ( ph  ->  x  e.  ( N `
 { Y }
) )
119, 10sseldd 3510 . . . . 5  |-  ( ph  ->  x  e.  V )
1211snssd 4178 . . . 4  |-  ( ph  ->  { x }  C_  V )
13 lspprat.x . . . 4  |-  ( ph  ->  X  e.  V )
14 lspprat.p . . . . . . . 8  |-  ( ph  ->  U  C.  ( N `  { X ,  Y } ) )
1514pssssd 3606 . . . . . . 7  |-  ( ph  ->  U  C_  ( N `  { X ,  Y } ) )
1613snssd 4178 . . . . . . . . . 10  |-  ( ph  ->  { X }  C_  V )
1712, 16unssd 3685 . . . . . . . . 9  |-  ( ph  ->  ( { x }  u.  { X } ) 
C_  V )
18 lspprat.s . . . . . . . . . 10  |-  S  =  ( LSubSp `  W )
196, 18, 7lspcl 17493 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  ( { x }  u.  { X } )  C_  V )  ->  ( N `  ( {
x }  u.  { X } ) )  e.  S )
203, 17, 19syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( N `  ( { x }  u.  { X } ) )  e.  S )
21 df-pr 4036 . . . . . . . . 9  |-  { X ,  Y }  =  ( { X }  u.  { Y } )
226, 7lspssid 17502 . . . . . . . . . . . 12  |-  ( ( W  e.  LMod  /\  ( { x }  u.  { X } )  C_  V )  ->  ( { x }  u.  { X } )  C_  ( N `  ( { x }  u.  { X } ) ) )
233, 17, 22syl2anc 661 . . . . . . . . . . 11  |-  ( ph  ->  ( { x }  u.  { X } ) 
C_  ( N `  ( { x }  u.  { X } ) ) )
2423unssbd 3687 . . . . . . . . . 10  |-  ( ph  ->  { X }  C_  ( N `  ( { x }  u.  { X } ) ) )
25 ssun1 3672 . . . . . . . . . . . . . 14  |-  { x }  C_  ( { x }  u.  { X } )
2625a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  { x }  C_  ( { x }  u.  { X } ) )
276, 7lspss 17501 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  ( { x }  u.  { X } )  C_  V  /\  { x }  C_  ( { x }  u.  { X } ) )  ->  ( N `  { x } ) 
C_  ( N `  ( { x }  u.  { X } ) ) )
283, 17, 26, 27syl3anc 1228 . . . . . . . . . . . 12  |-  ( ph  ->  ( N `  {
x } )  C_  ( N `  ( { x }  u.  { X } ) ) )
29 0ss 3819 . . . . . . . . . . . . . . 15  |-  (/)  C_  V
3029a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  -> 
(/)  C_  V )
31 uncom 3653 . . . . . . . . . . . . . . . . . 18  |-  ( (/)  u. 
{ Y } )  =  ( { Y }  u.  (/) )
32 un0 3815 . . . . . . . . . . . . . . . . . 18  |-  ( { Y }  u.  (/) )  =  { Y }
3331, 32eqtri 2496 . . . . . . . . . . . . . . . . 17  |-  ( (/)  u. 
{ Y } )  =  { Y }
3433fveq2i 5875 . . . . . . . . . . . . . . . 16  |-  ( N `
 ( (/)  u.  { Y } ) )  =  ( N `  { Y } )
3510, 34syl6eleqr 2566 . . . . . . . . . . . . . . 15  |-  ( ph  ->  x  e.  ( N `
 ( (/)  u.  { Y } ) ) )
36 lsppratlem1.x2 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  x  e.  ( U 
\  {  .0.  }
) )
3736eldifbd 3494 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  -.  x  e.  {  .0.  } )
38 lsppratlem1.o . . . . . . . . . . . . . . . . . 18  |-  .0.  =  ( 0g `  W )
3938, 7lsp0 17526 . . . . . . . . . . . . . . . . 17  |-  ( W  e.  LMod  ->  ( N `
 (/) )  =  {  .0.  } )
403, 39syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( N `  (/) )  =  {  .0.  } )
4137, 40neleqtrrd 2580 . . . . . . . . . . . . . . 15  |-  ( ph  ->  -.  x  e.  ( N `  (/) ) )
4235, 41eldifd 3492 . . . . . . . . . . . . . 14  |-  ( ph  ->  x  e.  ( ( N `  ( (/)  u. 
{ Y } ) )  \  ( N `
 (/) ) ) )
436, 18, 7lspsolv 17660 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LVec  /\  ( (/)  C_  V  /\  Y  e.  V  /\  x  e.  ( ( N `  ( (/)  u.  { Y } ) )  \ 
( N `  (/) ) ) ) )  ->  Y  e.  ( N `  ( (/) 
u.  { x }
) ) )
441, 30, 4, 42, 43syl13anc 1230 . . . . . . . . . . . . 13  |-  ( ph  ->  Y  e.  ( N `
 ( (/)  u.  {
x } ) ) )
45 uncom 3653 . . . . . . . . . . . . . . 15  |-  ( (/)  u. 
{ x } )  =  ( { x }  u.  (/) )
46 un0 3815 . . . . . . . . . . . . . . 15  |-  ( { x }  u.  (/) )  =  { x }
4745, 46eqtri 2496 . . . . . . . . . . . . . 14  |-  ( (/)  u. 
{ x } )  =  { x }
4847fveq2i 5875 . . . . . . . . . . . . 13  |-  ( N `
 ( (/)  u.  {
x } ) )  =  ( N `  { x } )
4944, 48syl6eleq 2565 . . . . . . . . . . . 12  |-  ( ph  ->  Y  e.  ( N `
 { x }
) )
5028, 49sseldd 3510 . . . . . . . . . . 11  |-  ( ph  ->  Y  e.  ( N `
 ( { x }  u.  { X } ) ) )
5150snssd 4178 . . . . . . . . . 10  |-  ( ph  ->  { Y }  C_  ( N `  ( { x }  u.  { X } ) ) )
5224, 51unssd 3685 . . . . . . . . 9  |-  ( ph  ->  ( { X }  u.  { Y } ) 
C_  ( N `  ( { x }  u.  { X } ) ) )
5321, 52syl5eqss 3553 . . . . . . . 8  |-  ( ph  ->  { X ,  Y }  C_  ( N `  ( { x }  u.  { X } ) ) )
5418, 7lspssp 17505 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( N `  ( {
x }  u.  { X } ) )  e.  S  /\  { X ,  Y }  C_  ( N `  ( {
x }  u.  { X } ) ) )  ->  ( N `  { X ,  Y }
)  C_  ( N `  ( { x }  u.  { X } ) ) )
553, 20, 53, 54syl3anc 1228 . . . . . . 7  |-  ( ph  ->  ( N `  { X ,  Y }
)  C_  ( N `  ( { x }  u.  { X } ) ) )
5615, 55sstrd 3519 . . . . . 6  |-  ( ph  ->  U  C_  ( N `  ( { x }  u.  { X } ) ) )
5756ssdifd 3645 . . . . 5  |-  ( ph  ->  ( U  \  ( N `  { x } ) )  C_  ( ( N `  ( { x }  u.  { X } ) ) 
\  ( N `  { x } ) ) )
58 lsppratlem1.y2 . . . . 5  |-  ( ph  ->  y  e.  ( U 
\  ( N `  { x } ) ) )
5957, 58sseldd 3510 . . . 4  |-  ( ph  ->  y  e.  ( ( N `  ( { x }  u.  { X } ) )  \ 
( N `  {
x } ) ) )
606, 18, 7lspsolv 17660 . . . 4  |-  ( ( W  e.  LVec  /\  ( { x }  C_  V  /\  X  e.  V  /\  y  e.  (
( N `  ( { x }  u.  { X } ) ) 
\  ( N `  { x } ) ) ) )  ->  X  e.  ( N `  ( { x }  u.  { y } ) ) )
611, 12, 13, 59, 60syl13anc 1230 . . 3  |-  ( ph  ->  X  e.  ( N `
 ( { x }  u.  { y } ) ) )
62 df-pr 4036 . . . 4  |-  { x ,  y }  =  ( { x }  u.  { y } )
6362fveq2i 5875 . . 3  |-  ( N `
 { x ,  y } )  =  ( N `  ( { x }  u.  { y } ) )
6461, 63syl6eleqr 2566 . 2  |-  ( ph  ->  X  e.  ( N `
 { x ,  y } ) )
65 lspprat.u . . . . . . . . . 10  |-  ( ph  ->  U  e.  S )
666, 18lssss 17454 . . . . . . . . . 10  |-  ( U  e.  S  ->  U  C_  V )
6765, 66syl 16 . . . . . . . . 9  |-  ( ph  ->  U  C_  V )
6867ssdifssd 3647 . . . . . . . 8  |-  ( ph  ->  ( U  \  ( N `  { x } ) )  C_  V )
6968, 58sseldd 3510 . . . . . . 7  |-  ( ph  ->  y  e.  V )
7069snssd 4178 . . . . . 6  |-  ( ph  ->  { y }  C_  V )
7112, 70unssd 3685 . . . . 5  |-  ( ph  ->  ( { x }  u.  { y } ) 
C_  V )
7262, 71syl5eqss 3553 . . . 4  |-  ( ph  ->  { x ,  y }  C_  V )
73 snsspr1 4182 . . . . 5  |-  { x }  C_  { x ,  y }
7473a1i 11 . . . 4  |-  ( ph  ->  { x }  C_  { x ,  y } )
756, 7lspss 17501 . . . 4  |-  ( ( W  e.  LMod  /\  {
x ,  y } 
C_  V  /\  {
x }  C_  { x ,  y } )  ->  ( N `  { x } ) 
C_  ( N `  { x ,  y } ) )
763, 72, 74, 75syl3anc 1228 . . 3  |-  ( ph  ->  ( N `  {
x } )  C_  ( N `  { x ,  y } ) )
7776, 49sseldd 3510 . 2  |-  ( ph  ->  Y  e.  ( N `
 { x ,  y } ) )
7864, 77jca 532 1  |-  ( ph  ->  ( X  e.  ( N `  { x ,  y } )  /\  Y  e.  ( N `  { x ,  y } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    \ cdif 3478    u. cun 3479    C_ wss 3481    C. wpss 3482   (/)c0 3790   {csn 4033   {cpr 4035   ` cfv 5594   Basecbs 14507   0gc0g 14712   LModclmod 17383   LSubSpclss 17449   LSpanclspn 17488   LVecclvec 17619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-tpos 6967  df-recs 7054  df-rdg 7088  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-2 10606  df-3 10607  df-ndx 14510  df-slot 14511  df-base 14512  df-sets 14513  df-ress 14514  df-plusg 14585  df-mulr 14586  df-0g 14714  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-grp 15929  df-minusg 15930  df-sbg 15931  df-cmn 16673  df-abl 16674  df-mgp 17014  df-ur 17026  df-ring 17072  df-oppr 17144  df-dvdsr 17162  df-unit 17163  df-invr 17193  df-drng 17269  df-lmod 17385  df-lss 17450  df-lsp 17489  df-lvec 17620
This theorem is referenced by:  lsppratlem5  17668
  Copyright terms: Public domain W3C validator