MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspprabs Structured version   Unicode version

Theorem lspprabs 18253
Description: Absorption of vector sum into span of pair. (Contributed by NM, 27-Apr-2015.)
Hypotheses
Ref Expression
lspprabs.v  |-  V  =  ( Base `  W
)
lspprabs.p  |-  .+  =  ( +g  `  W )
lspprabs.n  |-  N  =  ( LSpan `  W )
lspprabs.w  |-  ( ph  ->  W  e.  LMod )
lspprabs.x  |-  ( ph  ->  X  e.  V )
lspprabs.y  |-  ( ph  ->  Y  e.  V )
Assertion
Ref Expression
lspprabs  |-  ( ph  ->  ( N `  { X ,  ( X  .+  Y ) } )  =  ( N `  { X ,  Y }
) )

Proof of Theorem lspprabs
StepHypRef Expression
1 lspprabs.w . . . . . . 7  |-  ( ph  ->  W  e.  LMod )
2 eqid 2429 . . . . . . . 8  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
32lsssssubg 18116 . . . . . . 7  |-  ( W  e.  LMod  ->  ( LSubSp `  W )  C_  (SubGrp `  W ) )
41, 3syl 17 . . . . . 6  |-  ( ph  ->  ( LSubSp `  W )  C_  (SubGrp `  W )
)
5 lspprabs.x . . . . . . 7  |-  ( ph  ->  X  e.  V )
6 lspprabs.v . . . . . . . 8  |-  V  =  ( Base `  W
)
7 lspprabs.n . . . . . . . 8  |-  N  =  ( LSpan `  W )
86, 2, 7lspsncl 18135 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  e.  (
LSubSp `  W ) )
91, 5, 8syl2anc 665 . . . . . 6  |-  ( ph  ->  ( N `  { X } )  e.  (
LSubSp `  W ) )
104, 9sseldd 3471 . . . . 5  |-  ( ph  ->  ( N `  { X } )  e.  (SubGrp `  W ) )
11 lspprabs.y . . . . . . 7  |-  ( ph  ->  Y  e.  V )
126, 2, 7lspsncl 18135 . . . . . . 7  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  ( N `  { Y } )  e.  (
LSubSp `  W ) )
131, 11, 12syl2anc 665 . . . . . 6  |-  ( ph  ->  ( N `  { Y } )  e.  (
LSubSp `  W ) )
144, 13sseldd 3471 . . . . 5  |-  ( ph  ->  ( N `  { Y } )  e.  (SubGrp `  W ) )
15 eqid 2429 . . . . . 6  |-  ( LSSum `  W )  =  (
LSSum `  W )
1615lsmub1 17243 . . . . 5  |-  ( ( ( N `  { X } )  e.  (SubGrp `  W )  /\  ( N `  { Y } )  e.  (SubGrp `  W ) )  -> 
( N `  { X } )  C_  (
( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) ) )
1710, 14, 16syl2anc 665 . . . 4  |-  ( ph  ->  ( N `  { X } )  C_  (
( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) ) )
182, 15lsmcl 18241 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( N `  { X } )  e.  (
LSubSp `  W )  /\  ( N `  { Y } )  e.  (
LSubSp `  W ) )  ->  ( ( N `
 { X }
) ( LSSum `  W
) ( N `  { Y } ) )  e.  ( LSubSp `  W
) )
191, 9, 13, 18syl3anc 1264 . . . . 5  |-  ( ph  ->  ( ( N `  { X } ) (
LSSum `  W ) ( N `  { Y } ) )  e.  ( LSubSp `  W )
)
206, 7lspsnid 18151 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  ( N `  { X } ) )
211, 5, 20syl2anc 665 . . . . . 6  |-  ( ph  ->  X  e.  ( N `
 { X }
) )
226, 7lspsnid 18151 . . . . . . 7  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  Y  e.  ( N `  { Y } ) )
231, 11, 22syl2anc 665 . . . . . 6  |-  ( ph  ->  Y  e.  ( N `
 { Y }
) )
24 lspprabs.p . . . . . . 7  |-  .+  =  ( +g  `  W )
2524, 15lsmelvali 17237 . . . . . 6  |-  ( ( ( ( N `  { X } )  e.  (SubGrp `  W )  /\  ( N `  { Y } )  e.  (SubGrp `  W ) )  /\  ( X  e.  ( N `  { X } )  /\  Y  e.  ( N `  { Y } ) ) )  ->  ( X  .+  Y )  e.  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) ) )
2610, 14, 21, 23, 25syl22anc 1265 . . . . 5  |-  ( ph  ->  ( X  .+  Y
)  e.  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) ) )
272, 7, 1, 19, 26lspsnel5a 18154 . . . 4  |-  ( ph  ->  ( N `  {
( X  .+  Y
) } )  C_  ( ( N `  { X } ) (
LSSum `  W ) ( N `  { Y } ) ) )
286, 24lmodvacl 18040 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  Y )  e.  V )
291, 5, 11, 28syl3anc 1264 . . . . . . 7  |-  ( ph  ->  ( X  .+  Y
)  e.  V )
306, 2, 7lspsncl 18135 . . . . . . 7  |-  ( ( W  e.  LMod  /\  ( X  .+  Y )  e.  V )  ->  ( N `  { ( X  .+  Y ) } )  e.  ( LSubSp `  W ) )
311, 29, 30syl2anc 665 . . . . . 6  |-  ( ph  ->  ( N `  {
( X  .+  Y
) } )  e.  ( LSubSp `  W )
)
324, 31sseldd 3471 . . . . 5  |-  ( ph  ->  ( N `  {
( X  .+  Y
) } )  e.  (SubGrp `  W )
)
334, 19sseldd 3471 . . . . 5  |-  ( ph  ->  ( ( N `  { X } ) (
LSSum `  W ) ( N `  { Y } ) )  e.  (SubGrp `  W )
)
3415lsmlub 17250 . . . . 5  |-  ( ( ( N `  { X } )  e.  (SubGrp `  W )  /\  ( N `  { ( X  .+  Y ) } )  e.  (SubGrp `  W )  /\  (
( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) )  e.  (SubGrp `  W ) )  -> 
( ( ( N `
 { X }
)  C_  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) )  /\  ( N `  { ( X  .+  Y ) } )  C_  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) ) )  <->  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { ( X 
.+  Y ) } ) )  C_  (
( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) ) ) )
3510, 32, 33, 34syl3anc 1264 . . . 4  |-  ( ph  ->  ( ( ( N `
 { X }
)  C_  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) )  /\  ( N `  { ( X  .+  Y ) } )  C_  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) ) )  <->  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { ( X 
.+  Y ) } ) )  C_  (
( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) ) ) )
3617, 27, 35mpbi2and 929 . . 3  |-  ( ph  ->  ( ( N `  { X } ) (
LSSum `  W ) ( N `  { ( X  .+  Y ) } ) )  C_  ( ( N `  { X } ) (
LSSum `  W ) ( N `  { Y } ) ) )
3715lsmub1 17243 . . . . 5  |-  ( ( ( N `  { X } )  e.  (SubGrp `  W )  /\  ( N `  { ( X  .+  Y ) } )  e.  (SubGrp `  W ) )  -> 
( N `  { X } )  C_  (
( N `  { X } ) ( LSSum `  W ) ( N `
 { ( X 
.+  Y ) } ) ) )
3810, 32, 37syl2anc 665 . . . 4  |-  ( ph  ->  ( N `  { X } )  C_  (
( N `  { X } ) ( LSSum `  W ) ( N `
 { ( X 
.+  Y ) } ) ) )
392, 15lsmcl 18241 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( N `  { X } )  e.  (
LSubSp `  W )  /\  ( N `  { ( X  .+  Y ) } )  e.  (
LSubSp `  W ) )  ->  ( ( N `
 { X }
) ( LSSum `  W
) ( N `  { ( X  .+  Y ) } ) )  e.  ( LSubSp `  W ) )
401, 9, 31, 39syl3anc 1264 . . . . 5  |-  ( ph  ->  ( ( N `  { X } ) (
LSSum `  W ) ( N `  { ( X  .+  Y ) } ) )  e.  ( LSubSp `  W )
)
41 eqid 2429 . . . . . . 7  |-  ( -g `  W )  =  (
-g `  W )
426, 7lspsnid 18151 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( X  .+  Y )  e.  V )  ->  ( X  .+  Y )  e.  ( N `  {
( X  .+  Y
) } ) )
431, 29, 42syl2anc 665 . . . . . . 7  |-  ( ph  ->  ( X  .+  Y
)  e.  ( N `
 { ( X 
.+  Y ) } ) )
4441, 15, 32, 10, 43, 21lsmelvalmi 17239 . . . . . 6  |-  ( ph  ->  ( ( X  .+  Y ) ( -g `  W ) X )  e.  ( ( N `
 { ( X 
.+  Y ) } ) ( LSSum `  W
) ( N `  { X } ) ) )
45 lmodabl 18070 . . . . . . . 8  |-  ( W  e.  LMod  ->  W  e. 
Abel )
461, 45syl 17 . . . . . . 7  |-  ( ph  ->  W  e.  Abel )
476, 24, 41ablpncan2 17393 . . . . . . 7  |-  ( ( W  e.  Abel  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  Y
) ( -g `  W
) X )  =  Y )
4846, 5, 11, 47syl3anc 1264 . . . . . 6  |-  ( ph  ->  ( ( X  .+  Y ) ( -g `  W ) X )  =  Y )
4915lsmcom 17431 . . . . . . 7  |-  ( ( W  e.  Abel  /\  ( N `  { ( X  .+  Y ) } )  e.  (SubGrp `  W )  /\  ( N `  { X } )  e.  (SubGrp `  W ) )  -> 
( ( N `  { ( X  .+  Y ) } ) ( LSSum `  W )
( N `  { X } ) )  =  ( ( N `  { X } ) (
LSSum `  W ) ( N `  { ( X  .+  Y ) } ) ) )
5046, 32, 10, 49syl3anc 1264 . . . . . 6  |-  ( ph  ->  ( ( N `  { ( X  .+  Y ) } ) ( LSSum `  W )
( N `  { X } ) )  =  ( ( N `  { X } ) (
LSSum `  W ) ( N `  { ( X  .+  Y ) } ) ) )
5144, 48, 503eltr3d 2531 . . . . 5  |-  ( ph  ->  Y  e.  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { ( X 
.+  Y ) } ) ) )
522, 7, 1, 40, 51lspsnel5a 18154 . . . 4  |-  ( ph  ->  ( N `  { Y } )  C_  (
( N `  { X } ) ( LSSum `  W ) ( N `
 { ( X 
.+  Y ) } ) ) )
534, 40sseldd 3471 . . . . 5  |-  ( ph  ->  ( ( N `  { X } ) (
LSSum `  W ) ( N `  { ( X  .+  Y ) } ) )  e.  (SubGrp `  W )
)
5415lsmlub 17250 . . . . 5  |-  ( ( ( N `  { X } )  e.  (SubGrp `  W )  /\  ( N `  { Y } )  e.  (SubGrp `  W )  /\  (
( N `  { X } ) ( LSSum `  W ) ( N `
 { ( X 
.+  Y ) } ) )  e.  (SubGrp `  W ) )  -> 
( ( ( N `
 { X }
)  C_  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { ( X 
.+  Y ) } ) )  /\  ( N `  { Y } )  C_  (
( N `  { X } ) ( LSSum `  W ) ( N `
 { ( X 
.+  Y ) } ) ) )  <->  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) )  C_  (
( N `  { X } ) ( LSSum `  W ) ( N `
 { ( X 
.+  Y ) } ) ) ) )
5510, 14, 53, 54syl3anc 1264 . . . 4  |-  ( ph  ->  ( ( ( N `
 { X }
)  C_  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { ( X 
.+  Y ) } ) )  /\  ( N `  { Y } )  C_  (
( N `  { X } ) ( LSSum `  W ) ( N `
 { ( X 
.+  Y ) } ) ) )  <->  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) )  C_  (
( N `  { X } ) ( LSSum `  W ) ( N `
 { ( X 
.+  Y ) } ) ) ) )
5638, 52, 55mpbi2and 929 . . 3  |-  ( ph  ->  ( ( N `  { X } ) (
LSSum `  W ) ( N `  { Y } ) )  C_  ( ( N `  { X } ) (
LSSum `  W ) ( N `  { ( X  .+  Y ) } ) ) )
5736, 56eqssd 3487 . 2  |-  ( ph  ->  ( ( N `  { X } ) (
LSSum `  W ) ( N `  { ( X  .+  Y ) } ) )  =  ( ( N `  { X } ) (
LSSum `  W ) ( N `  { Y } ) ) )
586, 7, 15, 1, 5, 29lsmpr 18247 . 2  |-  ( ph  ->  ( N `  { X ,  ( X  .+  Y ) } )  =  ( ( N `
 { X }
) ( LSSum `  W
) ( N `  { ( X  .+  Y ) } ) ) )
596, 7, 15, 1, 5, 11lsmpr 18247 . 2  |-  ( ph  ->  ( N `  { X ,  Y }
)  =  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) ) )
6057, 58, 593eqtr4d 2480 1  |-  ( ph  ->  ( N `  { X ,  ( X  .+  Y ) } )  =  ( N `  { X ,  Y }
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870    C_ wss 3442   {csn 4002   {cpr 4004   ` cfv 5601  (class class class)co 6305   Basecbs 15084   +g cplusg 15152   -gcsg 16622  SubGrpcsubg 16762   LSSumclsm 17221   Abelcabl 17366   LModclmod 18026   LSubSpclss 18090   LSpanclspn 18129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-2 10668  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15165  df-0g 15299  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-submnd 16534  df-grp 16624  df-minusg 16625  df-sbg 16626  df-subg 16765  df-cntz 16922  df-lsm 17223  df-cmn 17367  df-abl 17368  df-mgp 17659  df-ur 17671  df-ring 17717  df-lmod 18028  df-lss 18091  df-lsp 18130
This theorem is referenced by:  lspabs2  18278  lspindp4  18295  mapdindp4  34999
  Copyright terms: Public domain W3C validator