MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspid Structured version   Unicode version

Theorem lspid 17946
Description: The span of a subspace is itself. (spanid 26665 analog.) (Contributed by NM, 15-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspid.s  |-  S  =  ( LSubSp `  W )
lspid.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspid  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U )  =  U )

Proof of Theorem lspid
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 eqid 2402 . . . 4  |-  ( Base `  W )  =  (
Base `  W )
2 lspid.s . . . 4  |-  S  =  ( LSubSp `  W )
31, 2lssss 17901 . . 3  |-  ( U  e.  S  ->  U  C_  ( Base `  W
) )
4 lspid.n . . . 4  |-  N  =  ( LSpan `  W )
51, 2, 4lspval 17939 . . 3  |-  ( ( W  e.  LMod  /\  U  C_  ( Base `  W
) )  ->  ( N `  U )  =  |^| { t  e.  S  |  U  C_  t } )
63, 5sylan2 472 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U )  =  |^| { t  e.  S  |  U  C_  t } )
7 intmin 4246 . . 3  |-  ( U  e.  S  ->  |^| { t  e.  S  |  U  C_  t }  =  U )
87adantl 464 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  |^| { t  e.  S  |  U  C_  t }  =  U )
96, 8eqtrd 2443 1  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U )  =  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842   {crab 2757    C_ wss 3413   |^|cint 4226   ` cfv 5568   Basecbs 14839   LModclmod 17830   LSubSpclss 17896   LSpanclspn 17935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-id 4737  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-riota 6239  df-ov 6280  df-0g 15054  df-mgm 16194  df-sgrp 16233  df-mnd 16243  df-grp 16379  df-lmod 17832  df-lss 17897  df-lsp 17936
This theorem is referenced by:  lspidm  17950  lspssp  17952  lspsn0  17972  lspsolvlem  18106  lbsextlem3  18124  islshpsm  31978  lshpnel2N  31983  lssats  32010  lkrlsp3  32102  dochspocN  34380  dochsatshp  34451  filnm  35378
  Copyright terms: Public domain W3C validator