MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspexchn2 Structured version   Unicode version

Theorem lspexchn2 17972
Description: Exchange property for span of a pair with negated membership. TODO: look at uses of lspexch 17970 to see if this will shorten proofs. (Contributed by NM, 24-May-2015.)
Hypotheses
Ref Expression
lspexchn2.v  |-  V  =  ( Base `  W
)
lspexchn2.n  |-  N  =  ( LSpan `  W )
lspexchn2.w  |-  ( ph  ->  W  e.  LVec )
lspexchn2.x  |-  ( ph  ->  X  e.  V )
lspexchn2.y  |-  ( ph  ->  Y  e.  V )
lspexchn2.z  |-  ( ph  ->  Z  e.  V )
lspexchn2.q  |-  ( ph  ->  -.  Y  e.  ( N `  { Z } ) )
lspexchn2.e  |-  ( ph  ->  -.  X  e.  ( N `  { Z ,  Y } ) )
Assertion
Ref Expression
lspexchn2  |-  ( ph  ->  -.  Y  e.  ( N `  { Z ,  X } ) )

Proof of Theorem lspexchn2
StepHypRef Expression
1 lspexchn2.v . . 3  |-  V  =  ( Base `  W
)
2 lspexchn2.n . . 3  |-  N  =  ( LSpan `  W )
3 lspexchn2.w . . 3  |-  ( ph  ->  W  e.  LVec )
4 lspexchn2.x . . 3  |-  ( ph  ->  X  e.  V )
5 lspexchn2.y . . 3  |-  ( ph  ->  Y  e.  V )
6 lspexchn2.z . . 3  |-  ( ph  ->  Z  e.  V )
7 lspexchn2.q . . 3  |-  ( ph  ->  -.  Y  e.  ( N `  { Z } ) )
8 lspexchn2.e . . . 4  |-  ( ph  ->  -.  X  e.  ( N `  { Z ,  Y } ) )
9 prcom 4094 . . . . . 6  |-  { Z ,  Y }  =  { Y ,  Z }
109fveq2i 5851 . . . . 5  |-  ( N `
 { Z ,  Y } )  =  ( N `  { Y ,  Z } )
1110eleq2i 2532 . . . 4  |-  ( X  e.  ( N `  { Z ,  Y }
)  <->  X  e.  ( N `  { Y ,  Z } ) )
128, 11sylnib 302 . . 3  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
131, 2, 3, 4, 5, 6, 7, 12lspexchn1 17971 . 2  |-  ( ph  ->  -.  Y  e.  ( N `  { X ,  Z } ) )
14 prcom 4094 . . . 4  |-  { X ,  Z }  =  { Z ,  X }
1514fveq2i 5851 . . 3  |-  ( N `
 { X ,  Z } )  =  ( N `  { Z ,  X } )
1615eleq2i 2532 . 2  |-  ( Y  e.  ( N `  { X ,  Z }
)  <->  Y  e.  ( N `  { Z ,  X } ) )
1713, 16sylnib 302 1  |-  ( ph  ->  -.  Y  e.  ( N `  { Z ,  X } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1398    e. wcel 1823   {csn 4016   {cpr 4018   ` cfv 5570   Basecbs 14716   LSpanclspn 17812   LVecclvec 17943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-tpos 6947  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-3 10591  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-mulr 14798  df-0g 14931  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-submnd 16166  df-grp 16256  df-minusg 16257  df-sbg 16258  df-subg 16397  df-cntz 16554  df-lsm 16855  df-cmn 16999  df-abl 17000  df-mgp 17337  df-ur 17349  df-ring 17395  df-oppr 17467  df-dvdsr 17485  df-unit 17486  df-invr 17516  df-drng 17593  df-lmod 17709  df-lss 17774  df-lsp 17813  df-lvec 17944
This theorem is referenced by:  baerlem5amN  37840  baerlem5bmN  37841  baerlem5abmN  37842
  Copyright terms: Public domain W3C validator