MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspexch Structured version   Unicode version

Theorem lspexch 17210
Description: Exchange property for span of a pair. TODO: see if a version with Y,Z and X,Z reversed will shorten proofs (analogous to lspexchn1 17211 vs. lspexchn2 17212); look for lspexch 17210 and prcom 3953 in same proof. TODO: would a hypothesis of  -.  X  e.  ( N `  { Z } ) instead of  ( N `  { X } )  =/=  ( N { Z } ) ` be better overall? This would be shorter and also satisfy the 
X  =/=  .0. condition. Here and also lspindp* and all proofs affected by them (all in NM's mathbox); there are 58 hypotheses with the 
=/= pattern as of 24-May-2015. (Contributed by NM, 11-Apr-2015.)
Hypotheses
Ref Expression
lspexch.v  |-  V  =  ( Base `  W
)
lspexch.o  |-  .0.  =  ( 0g `  W )
lspexch.n  |-  N  =  ( LSpan `  W )
lspexch.w  |-  ( ph  ->  W  e.  LVec )
lspexch.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
lspexch.y  |-  ( ph  ->  Y  e.  V )
lspexch.z  |-  ( ph  ->  Z  e.  V )
lspexch.q  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Z } ) )
lspexch.e  |-  ( ph  ->  X  e.  ( N `
 { Y ,  Z } ) )
Assertion
Ref Expression
lspexch  |-  ( ph  ->  Y  e.  ( N `
 { X ,  Z } ) )

Proof of Theorem lspexch
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspexch.e . . 3  |-  ( ph  ->  X  e.  ( N `
 { Y ,  Z } ) )
2 lspexch.v . . . 4  |-  V  =  ( Base `  W
)
3 eqid 2443 . . . 4  |-  ( +g  `  W )  =  ( +g  `  W )
4 eqid 2443 . . . 4  |-  (Scalar `  W )  =  (Scalar `  W )
5 eqid 2443 . . . 4  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
6 eqid 2443 . . . 4  |-  ( .s
`  W )  =  ( .s `  W
)
7 lspexch.n . . . 4  |-  N  =  ( LSpan `  W )
8 lspexch.w . . . . 5  |-  ( ph  ->  W  e.  LVec )
9 lveclmod 17187 . . . . 5  |-  ( W  e.  LVec  ->  W  e. 
LMod )
108, 9syl 16 . . . 4  |-  ( ph  ->  W  e.  LMod )
11 lspexch.y . . . 4  |-  ( ph  ->  Y  e.  V )
12 lspexch.z . . . 4  |-  ( ph  ->  Z  e.  V )
132, 3, 4, 5, 6, 7, 10, 11, 12lspprel 17175 . . 3  |-  ( ph  ->  ( X  e.  ( N `  { Y ,  Z } )  <->  E. j  e.  ( Base `  (Scalar `  W ) ) E. k  e.  ( Base `  (Scalar `  W )
) X  =  ( ( j ( .s
`  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) ) ) )
141, 13mpbid 210 . 2  |-  ( ph  ->  E. j  e.  (
Base `  (Scalar `  W
) ) E. k  e.  ( Base `  (Scalar `  W ) ) X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )
15 eqid 2443 . . . . . . . 8  |-  ( -g `  W )  =  (
-g `  W )
16 eqid 2443 . . . . . . . 8  |-  ( invg `  (Scalar `  W ) )  =  ( invg `  (Scalar `  W ) )
1783ad2ant1 1009 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  ->  W  e.  LVec )
1817, 9syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  ->  W  e.  LMod )
19 simp2r 1015 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
k  e.  ( Base `  (Scalar `  W )
) )
20 lspexch.x . . . . . . . . . 10  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
21203ad2ant1 1009 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  ->  X  e.  ( V  \  {  .0.  } ) )
2221eldifad 3340 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  ->  X  e.  V )
23123ad2ant1 1009 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  ->  Z  e.  V )
242, 3, 15, 6, 4, 5, 16, 18, 19, 22, 23lmodsubvs 17001 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( X ( -g `  W ) ( k ( .s `  W
) Z ) )  =  ( X ( +g  `  W ) ( ( ( invg `  (Scalar `  W ) ) `  k ) ( .s
`  W ) Z ) ) )
25 simp3 990 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  ->  X  =  ( (
j ( .s `  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) ) )
2625eqcomd 2448 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( ( j ( .s `  W ) Y ) ( +g  `  W ) ( k ( .s `  W
) Z ) )  =  X )
27103ad2ant1 1009 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  ->  W  e.  LMod )
28 lmodgrp 16955 . . . . . . . . . 10  |-  ( W  e.  LMod  ->  W  e. 
Grp )
2927, 28syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  ->  W  e.  Grp )
302, 4, 6, 5lmodvscl 16965 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  k  e.  ( Base `  (Scalar `  W ) )  /\  Z  e.  V )  ->  ( k ( .s
`  W ) Z )  e.  V )
3118, 19, 23, 30syl3anc 1218 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( k ( .s
`  W ) Z )  e.  V )
32 simp2l 1014 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
j  e.  ( Base `  (Scalar `  W )
) )
33113ad2ant1 1009 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  ->  Y  e.  V )
342, 4, 6, 5lmodvscl 16965 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  j  e.  ( Base `  (Scalar `  W ) )  /\  Y  e.  V )  ->  ( j ( .s
`  W ) Y )  e.  V )
3518, 32, 33, 34syl3anc 1218 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( j ( .s
`  W ) Y )  e.  V )
362, 3, 15grpsubadd 15613 . . . . . . . . 9  |-  ( ( W  e.  Grp  /\  ( X  e.  V  /\  ( k ( .s
`  W ) Z )  e.  V  /\  ( j ( .s
`  W ) Y )  e.  V ) )  ->  ( ( X ( -g `  W
) ( k ( .s `  W ) Z ) )  =  ( j ( .s
`  W ) Y )  <->  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) )  =  X ) )
3729, 22, 31, 35, 36syl13anc 1220 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( ( X (
-g `  W )
( k ( .s
`  W ) Z ) )  =  ( j ( .s `  W ) Y )  <-> 
( ( j ( .s `  W ) Y ) ( +g  `  W ) ( k ( .s `  W
) Z ) )  =  X ) )
3826, 37mpbird 232 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( X ( -g `  W ) ( k ( .s `  W
) Z ) )  =  ( j ( .s `  W ) Y ) )
3924, 38eqtr3d 2477 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( X ( +g  `  W ) ( ( ( invg `  (Scalar `  W ) ) `
 k ) ( .s `  W ) Z ) )  =  ( j ( .s
`  W ) Y ) )
40 eqid 2443 . . . . . . 7  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
41 eqid 2443 . . . . . . 7  |-  ( invr `  (Scalar `  W )
)  =  ( invr `  (Scalar `  W )
)
42 lspexch.q . . . . . . . . . 10  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Z } ) )
43423ad2ant1 1009 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( N `  { X } )  =/=  ( N `  { Z } ) )
44 lspexch.o . . . . . . . . . . . 12  |-  .0.  =  ( 0g `  W )
4517adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  ( Base `  (Scalar `  W )
)  /\  k  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
j ( .s `  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) ) )  /\  j  =  ( 0g `  (Scalar `  W ) ) )  ->  W  e.  LVec )
4623adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  ( Base `  (Scalar `  W )
)  /\  k  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
j ( .s `  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) ) )  /\  j  =  ( 0g `  (Scalar `  W ) ) )  ->  Z  e.  V
)
4725adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  ( Base `  (Scalar `  W )
)  /\  k  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
j ( .s `  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) ) )  /\  j  =  ( 0g `  (Scalar `  W ) ) )  ->  X  =  ( ( j ( .s
`  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) ) )
48 oveq1 6098 . . . . . . . . . . . . . . . 16  |-  ( j  =  ( 0g `  (Scalar `  W ) )  ->  ( j ( .s `  W ) Y )  =  ( ( 0g `  (Scalar `  W ) ) ( .s `  W ) Y ) )
4948oveq1d 6106 . . . . . . . . . . . . . . 15  |-  ( j  =  ( 0g `  (Scalar `  W ) )  ->  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) )  =  ( ( ( 0g `  (Scalar `  W ) ) ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )
502, 4, 6, 40, 44lmod0vs 16981 . . . . . . . . . . . . . . . . . 18  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  (
( 0g `  (Scalar `  W ) ) ( .s `  W ) Y )  =  .0.  )
5118, 33, 50syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( ( 0g `  (Scalar `  W ) ) ( .s `  W
) Y )  =  .0.  )
5251oveq1d 6106 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( ( ( 0g
`  (Scalar `  W )
) ( .s `  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) )  =  (  .0.  ( +g  `  W ) ( k ( .s `  W
) Z ) ) )
532, 3, 44lmod0vlid 16978 . . . . . . . . . . . . . . . . 17  |-  ( ( W  e.  LMod  /\  (
k ( .s `  W ) Z )  e.  V )  -> 
(  .0.  ( +g  `  W ) ( k ( .s `  W
) Z ) )  =  ( k ( .s `  W ) Z ) )
5418, 31, 53syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
(  .0.  ( +g  `  W ) ( k ( .s `  W
) Z ) )  =  ( k ( .s `  W ) Z ) )
5552, 54eqtrd 2475 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( ( ( 0g
`  (Scalar `  W )
) ( .s `  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) )  =  ( k ( .s
`  W ) Z ) )
5649, 55sylan9eqr 2497 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  ( Base `  (Scalar `  W )
)  /\  k  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
j ( .s `  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) ) )  /\  j  =  ( 0g `  (Scalar `  W ) ) )  ->  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) )  =  ( k ( .s `  W ) Z ) )
5747, 56eqtrd 2475 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  ( Base `  (Scalar `  W )
)  /\  k  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
j ( .s `  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) ) )  /\  j  =  ( 0g `  (Scalar `  W ) ) )  ->  X  =  ( k ( .s `  W ) Z ) )
582, 6, 4, 5, 7, 18, 19, 23lspsneli 17082 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( k ( .s
`  W ) Z )  e.  ( N `
 { Z }
) )
5958adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  ( Base `  (Scalar `  W )
)  /\  k  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
j ( .s `  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) ) )  /\  j  =  ( 0g `  (Scalar `  W ) ) )  ->  ( k ( .s `  W ) Z )  e.  ( N `  { Z } ) )
6057, 59eqeltrd 2517 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  ( Base `  (Scalar `  W )
)  /\  k  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
j ( .s `  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) ) )  /\  j  =  ( 0g `  (Scalar `  W ) ) )  ->  X  e.  ( N `  { Z } ) )
61 eldifsni 4001 . . . . . . . . . . . . . 14  |-  ( X  e.  ( V  \  {  .0.  } )  ->  X  =/=  .0.  )
6221, 61syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  ->  X  =/=  .0.  )
6362adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  ( Base `  (Scalar `  W )
)  /\  k  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
j ( .s `  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) ) )  /\  j  =  ( 0g `  (Scalar `  W ) ) )  ->  X  =/=  .0.  )
642, 44, 7, 45, 46, 60, 63lspsneleq 17196 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  ( Base `  (Scalar `  W )
)  /\  k  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
j ( .s `  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) ) )  /\  j  =  ( 0g `  (Scalar `  W ) ) )  ->  ( N `  { X } )  =  ( N `  { Z } ) )
6564ex 434 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( j  =  ( 0g `  (Scalar `  W ) )  -> 
( N `  { X } )  =  ( N `  { Z } ) ) )
6665necon3d 2646 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( ( N `  { X } )  =/=  ( N `  { Z } )  ->  j  =/=  ( 0g `  (Scalar `  W ) ) ) )
6743, 66mpd 15 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
j  =/=  ( 0g
`  (Scalar `  W )
) )
68 eldifsn 4000 . . . . . . . 8  |-  ( j  e.  ( ( Base `  (Scalar `  W )
)  \  { ( 0g `  (Scalar `  W
) ) } )  <-> 
( j  e.  (
Base `  (Scalar `  W
) )  /\  j  =/=  ( 0g `  (Scalar `  W ) ) ) )
6932, 67, 68sylanbrc 664 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
j  e.  ( (
Base `  (Scalar `  W
) )  \  {
( 0g `  (Scalar `  W ) ) } ) )
704lmodfgrp 16957 . . . . . . . . . . 11  |-  ( W  e.  LMod  ->  (Scalar `  W )  e.  Grp )
7127, 70syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
(Scalar `  W )  e.  Grp )
725, 16grpinvcl 15583 . . . . . . . . . 10  |-  ( ( (Scalar `  W )  e.  Grp  /\  k  e.  ( Base `  (Scalar `  W ) ) )  ->  ( ( invg `  (Scalar `  W ) ) `  k )  e.  (
Base `  (Scalar `  W
) ) )
7371, 19, 72syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( ( invg `  (Scalar `  W )
) `  k )  e.  ( Base `  (Scalar `  W ) ) )
742, 4, 6, 5lmodvscl 16965 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  (
( invg `  (Scalar `  W ) ) `
 k )  e.  ( Base `  (Scalar `  W ) )  /\  Z  e.  V )  ->  ( ( ( invg `  (Scalar `  W ) ) `  k ) ( .s
`  W ) Z )  e.  V )
7518, 73, 23, 74syl3anc 1218 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( ( ( invg `  (Scalar `  W ) ) `  k ) ( .s
`  W ) Z )  e.  V )
762, 3lmodvacl 16962 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  (
( ( invg `  (Scalar `  W )
) `  k )
( .s `  W
) Z )  e.  V )  ->  ( X ( +g  `  W
) ( ( ( invg `  (Scalar `  W ) ) `  k ) ( .s
`  W ) Z ) )  e.  V
)
7718, 22, 75, 76syl3anc 1218 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( X ( +g  `  W ) ( ( ( invg `  (Scalar `  W ) ) `
 k ) ( .s `  W ) Z ) )  e.  V )
782, 6, 4, 5, 40, 41, 17, 69, 77, 33lvecinv 17194 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( ( X ( +g  `  W ) ( ( ( invg `  (Scalar `  W ) ) `  k ) ( .s
`  W ) Z ) )  =  ( j ( .s `  W ) Y )  <-> 
Y  =  ( ( ( invr `  (Scalar `  W ) ) `  j ) ( .s
`  W ) ( X ( +g  `  W
) ( ( ( invg `  (Scalar `  W ) ) `  k ) ( .s
`  W ) Z ) ) ) ) )
7939, 78mpbid 210 . . . . 5  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  ->  Y  =  ( (
( invr `  (Scalar `  W
) ) `  j
) ( .s `  W ) ( X ( +g  `  W
) ( ( ( invg `  (Scalar `  W ) ) `  k ) ( .s
`  W ) Z ) ) ) )
80 eqid 2443 . . . . . . 7  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
812, 80, 7, 18, 22, 23lspprcl 17059 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( N `  { X ,  Z }
)  e.  ( LSubSp `  W ) )
824lvecdrng 17186 . . . . . . . 8  |-  ( W  e.  LVec  ->  (Scalar `  W )  e.  DivRing )
8317, 82syl 16 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
(Scalar `  W )  e.  DivRing )
845, 40, 41drnginvrcl 16849 . . . . . . 7  |-  ( ( (Scalar `  W )  e.  DivRing  /\  j  e.  ( Base `  (Scalar `  W
) )  /\  j  =/=  ( 0g `  (Scalar `  W ) ) )  ->  ( ( invr `  (Scalar `  W )
) `  j )  e.  ( Base `  (Scalar `  W ) ) )
8583, 32, 67, 84syl3anc 1218 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( ( invr `  (Scalar `  W ) ) `  j )  e.  (
Base `  (Scalar `  W
) ) )
86 eqid 2443 . . . . . . . . . 10  |-  ( 1r
`  (Scalar `  W )
)  =  ( 1r
`  (Scalar `  W )
)
872, 4, 6, 86lmodvs1 16976 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) X )  =  X )
8818, 22, 87syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( ( 1r `  (Scalar `  W ) ) ( .s `  W
) X )  =  X )
8988oveq1d 6106 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) X ) ( +g  `  W
) ( ( ( invg `  (Scalar `  W ) ) `  k ) ( .s
`  W ) Z ) )  =  ( X ( +g  `  W
) ( ( ( invg `  (Scalar `  W ) ) `  k ) ( .s
`  W ) Z ) ) )
904lmodrng 16956 . . . . . . . . 9  |-  ( W  e.  LMod  ->  (Scalar `  W )  e.  Ring )
915, 86rngidcl 16665 . . . . . . . . 9  |-  ( (Scalar `  W )  e.  Ring  -> 
( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) ) )
9218, 90, 913syl 20 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) ) )
932, 3, 6, 4, 5, 7, 18, 92, 73, 22, 23lsppreli 17171 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) X ) ( +g  `  W
) ( ( ( invg `  (Scalar `  W ) ) `  k ) ( .s
`  W ) Z ) )  e.  ( N `  { X ,  Z } ) )
9489, 93eqeltrrd 2518 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( X ( +g  `  W ) ( ( ( invg `  (Scalar `  W ) ) `
 k ) ( .s `  W ) Z ) )  e.  ( N `  { X ,  Z }
) )
954, 6, 5, 80lssvscl 17036 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  ( N `  { X ,  Z }
)  e.  ( LSubSp `  W ) )  /\  ( ( ( invr `  (Scalar `  W )
) `  j )  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( ( ( invg `  (Scalar `  W ) ) `  k ) ( .s
`  W ) Z ) )  e.  ( N `  { X ,  Z } ) ) )  ->  ( (
( invr `  (Scalar `  W
) ) `  j
) ( .s `  W ) ( X ( +g  `  W
) ( ( ( invg `  (Scalar `  W ) ) `  k ) ( .s
`  W ) Z ) ) )  e.  ( N `  { X ,  Z }
) )
9618, 81, 85, 94, 95syl22anc 1219 . . . . 5  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( ( ( invr `  (Scalar `  W )
) `  j )
( .s `  W
) ( X ( +g  `  W ) ( ( ( invg `  (Scalar `  W ) ) `  k ) ( .s
`  W ) Z ) ) )  e.  ( N `  { X ,  Z }
) )
9779, 96eqeltrd 2517 . . . 4  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  ->  Y  e.  ( N `  { X ,  Z } ) )
98973exp 1186 . . 3  |-  ( ph  ->  ( ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  ->  ( X  =  ( (
j ( .s `  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) )  ->  Y  e.  ( N `  { X ,  Z } ) ) ) )
9998rexlimdvv 2847 . 2  |-  ( ph  ->  ( E. j  e.  ( Base `  (Scalar `  W ) ) E. k  e.  ( Base `  (Scalar `  W )
) X  =  ( ( j ( .s
`  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) )  ->  Y  e.  ( N `  { X ,  Z } ) ) )
10014, 99mpd 15 1  |-  ( ph  ->  Y  e.  ( N `
 { X ,  Z } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2606   E.wrex 2716    \ cdif 3325   {csn 3877   {cpr 3879   ` cfv 5418  (class class class)co 6091   Basecbs 14174   +g cplusg 14238  Scalarcsca 14241   .scvsca 14242   0gc0g 14378   Grpcgrp 15410   invgcminusg 15411   -gcsg 15413   1rcur 16603   Ringcrg 16645   invrcinvr 16763   DivRingcdr 16832   LModclmod 16948   LSubSpclss 17013   LSpanclspn 17052   LVecclvec 17183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-tpos 6745  df-recs 6832  df-rdg 6866  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-2 10380  df-3 10381  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-ress 14181  df-plusg 14251  df-mulr 14252  df-0g 14380  df-mnd 15415  df-submnd 15465  df-grp 15545  df-minusg 15546  df-sbg 15547  df-subg 15678  df-cntz 15835  df-lsm 16135  df-cmn 16279  df-abl 16280  df-mgp 16592  df-ur 16604  df-rng 16647  df-oppr 16715  df-dvdsr 16733  df-unit 16734  df-invr 16764  df-drng 16834  df-lmod 16950  df-lss 17014  df-lsp 17053  df-lvec 17184
This theorem is referenced by:  lspexchn1  17211  lspindp1  17214  mapdh8ab  35422  mapdh8ad  35424  mapdh8b  35425  mapdh8c  35426  mapdh8e  35429
  Copyright terms: Public domain W3C validator