Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lspeqlco Structured version   Unicode version

Theorem lspeqlco 33313
Description: Equivalence of a span of a set of vectors of a left module defined as the intersection of all linear subspaces which each contain every vector in that set ( see df-lsp 17816) and as the set of all linear combinations of the vectors of the set with finite support. (Contributed by AV, 20-Apr-2019.)
Hypothesis
Ref Expression
lspeqvlco.b  |-  B  =  ( Base `  M
)
Assertion
Ref Expression
lspeqlco  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  -> 
( M LinCo  V )  =  ( ( LSpan `  M ) `  V
) )

Proof of Theorem lspeqlco
StepHypRef Expression
1 lspeqvlco.b . . 3  |-  B  =  ( Base `  M
)
21lcosslsp 33312 . 2  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  -> 
( M LinCo  V )  C_  ( ( LSpan `  M
) `  V )
)
31lspsslco 33311 . 2  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  -> 
( ( LSpan `  M
) `  V )  C_  ( M LinCo  V ) )
42, 3eqssd 3506 1  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  -> 
( M LinCo  V )  =  ( ( LSpan `  M ) `  V
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   ~Pcpw 3999   ` cfv 5570  (class class class)co 6270   Basecbs 14719   LModclmod 17710   LSpanclspn 17815   LinCo clinco 33279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-oi 7927  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-n0 10792  df-z 10861  df-uz 11083  df-fz 11676  df-fzo 11800  df-seq 12093  df-hash 12391  df-ndx 14722  df-slot 14723  df-base 14724  df-sets 14725  df-ress 14726  df-plusg 14800  df-0g 14934  df-gsum 14935  df-mre 15078  df-mrc 15079  df-acs 15081  df-mgm 16074  df-sgrp 16113  df-mnd 16123  df-mhm 16168  df-submnd 16169  df-grp 16259  df-minusg 16260  df-sbg 16261  df-mulg 16262  df-subg 16400  df-ghm 16467  df-cntz 16557  df-cmn 17002  df-abl 17003  df-mgp 17340  df-ur 17352  df-ring 17398  df-lmod 17712  df-lss 17777  df-lsp 17816  df-linc 33280  df-lco 33281
This theorem is referenced by:  lindslinindsimp1  33331  lindslinindsimp2  33337
  Copyright terms: Public domain W3C validator