MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspdisjb Structured version   Unicode version

Theorem lspdisjb 17219
Description: A nonzero vector is not in a subspace iff its span is disjoint with the subspace. (Contributed by NM, 23-Apr-2015.)
Hypotheses
Ref Expression
lspdisjb.v  |-  V  =  ( Base `  W
)
lspdisjb.o  |-  .0.  =  ( 0g `  W )
lspdisjb.n  |-  N  =  ( LSpan `  W )
lspdisjb.s  |-  S  =  ( LSubSp `  W )
lspdisjb.w  |-  ( ph  ->  W  e.  LVec )
lspdisjb.u  |-  ( ph  ->  U  e.  S )
lspdisjb.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
Assertion
Ref Expression
lspdisjb  |-  ( ph  ->  ( -.  X  e.  U  <->  ( ( N `
 { X }
)  i^i  U )  =  {  .0.  } ) )

Proof of Theorem lspdisjb
StepHypRef Expression
1 lspdisjb.v . . 3  |-  V  =  ( Base `  W
)
2 lspdisjb.o . . 3  |-  .0.  =  ( 0g `  W )
3 lspdisjb.n . . 3  |-  N  =  ( LSpan `  W )
4 lspdisjb.s . . 3  |-  S  =  ( LSubSp `  W )
5 lspdisjb.w . . . 4  |-  ( ph  ->  W  e.  LVec )
65adantr 465 . . 3  |-  ( (
ph  /\  -.  X  e.  U )  ->  W  e.  LVec )
7 lspdisjb.u . . . 4  |-  ( ph  ->  U  e.  S )
87adantr 465 . . 3  |-  ( (
ph  /\  -.  X  e.  U )  ->  U  e.  S )
9 lspdisjb.x . . . . 5  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
109eldifad 3352 . . . 4  |-  ( ph  ->  X  e.  V )
1110adantr 465 . . 3  |-  ( (
ph  /\  -.  X  e.  U )  ->  X  e.  V )
12 simpr 461 . . 3  |-  ( (
ph  /\  -.  X  e.  U )  ->  -.  X  e.  U )
131, 2, 3, 4, 6, 8, 11, 12lspdisj 17218 . 2  |-  ( (
ph  /\  -.  X  e.  U )  ->  (
( N `  { X } )  i^i  U
)  =  {  .0.  } )
14 eldifsni 4013 . . . . 5  |-  ( X  e.  ( V  \  {  .0.  } )  ->  X  =/=  .0.  )
159, 14syl 16 . . . 4  |-  ( ph  ->  X  =/=  .0.  )
1615adantr 465 . . 3  |-  ( (
ph  /\  ( ( N `  { X } )  i^i  U
)  =  {  .0.  } )  ->  X  =/=  .0.  )
17 lveclmod 17199 . . . . . . 7  |-  ( W  e.  LVec  ->  W  e. 
LMod )
185, 17syl 16 . . . . . 6  |-  ( ph  ->  W  e.  LMod )
191, 3lspsnid 17086 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  ( N `  { X } ) )
2018, 10, 19syl2anc 661 . . . . 5  |-  ( ph  ->  X  e.  ( N `
 { X }
) )
21 elin 3551 . . . . . . 7  |-  ( X  e.  ( ( N `
 { X }
)  i^i  U )  <->  ( X  e.  ( N `
 { X }
)  /\  X  e.  U ) )
22 eleq2 2504 . . . . . . . 8  |-  ( ( ( N `  { X } )  i^i  U
)  =  {  .0.  }  ->  ( X  e.  ( ( N `  { X } )  i^i 
U )  <->  X  e.  {  .0.  } ) )
23 elsni 3914 . . . . . . . 8  |-  ( X  e.  {  .0.  }  ->  X  =  .0.  )
2422, 23syl6bi 228 . . . . . . 7  |-  ( ( ( N `  { X } )  i^i  U
)  =  {  .0.  }  ->  ( X  e.  ( ( N `  { X } )  i^i 
U )  ->  X  =  .0.  ) )
2521, 24syl5bir 218 . . . . . 6  |-  ( ( ( N `  { X } )  i^i  U
)  =  {  .0.  }  ->  ( ( X  e.  ( N `  { X } )  /\  X  e.  U )  ->  X  =  .0.  )
)
2625expd 436 . . . . 5  |-  ( ( ( N `  { X } )  i^i  U
)  =  {  .0.  }  ->  ( X  e.  ( N `  { X } )  ->  ( X  e.  U  ->  X  =  .0.  ) ) )
2720, 26mpan9 469 . . . 4  |-  ( (
ph  /\  ( ( N `  { X } )  i^i  U
)  =  {  .0.  } )  ->  ( X  e.  U  ->  X  =  .0.  ) )
2827necon3ad 2656 . . 3  |-  ( (
ph  /\  ( ( N `  { X } )  i^i  U
)  =  {  .0.  } )  ->  ( X  =/=  .0.  ->  -.  X  e.  U ) )
2916, 28mpd 15 . 2  |-  ( (
ph  /\  ( ( N `  { X } )  i^i  U
)  =  {  .0.  } )  ->  -.  X  e.  U )
3013, 29impbida 828 1  |-  ( ph  ->  ( -.  X  e.  U  <->  ( ( N `
 { X }
)  i^i  U )  =  {  .0.  } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2618    \ cdif 3337    i^i cin 3339   {csn 3889   ` cfv 5430   Basecbs 14186   0gc0g 14390   LModclmod 16960   LSubSpclss 17025   LSpanclspn 17064   LVecclvec 17195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-1st 6589  df-2nd 6590  df-tpos 6757  df-recs 6844  df-rdg 6878  df-er 7113  df-en 7323  df-dom 7324  df-sdom 7325  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-nn 10335  df-2 10392  df-3 10393  df-ndx 14189  df-slot 14190  df-base 14191  df-sets 14192  df-ress 14193  df-plusg 14263  df-mulr 14264  df-0g 14392  df-mnd 15427  df-grp 15557  df-minusg 15558  df-sbg 15559  df-mgp 16604  df-ur 16616  df-rng 16659  df-oppr 16727  df-dvdsr 16745  df-unit 16746  df-invr 16776  df-drng 16846  df-lmod 16962  df-lss 17026  df-lsp 17065  df-lvec 17196
This theorem is referenced by:  mapdh6b0N  35393  hdmap1l6b0N  35468
  Copyright terms: Public domain W3C validator