MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspdisj Structured version   Visualization version   Unicode version

Theorem lspdisj 18426
Description: The span of a vector not in a subspace is disjoint with the subspace. (Contributed by NM, 6-Apr-2015.)
Hypotheses
Ref Expression
lspdisj.v  |-  V  =  ( Base `  W
)
lspdisj.o  |-  .0.  =  ( 0g `  W )
lspdisj.n  |-  N  =  ( LSpan `  W )
lspdisj.s  |-  S  =  ( LSubSp `  W )
lspdisj.w  |-  ( ph  ->  W  e.  LVec )
lspdisj.u  |-  ( ph  ->  U  e.  S )
lspdisj.x  |-  ( ph  ->  X  e.  V )
lspdisj.e  |-  ( ph  ->  -.  X  e.  U
)
Assertion
Ref Expression
lspdisj  |-  ( ph  ->  ( ( N `  { X } )  i^i 
U )  =  {  .0.  } )

Proof of Theorem lspdisj
Dummy variables  v 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspdisj.w . . . . . . . . . 10  |-  ( ph  ->  W  e.  LVec )
2 lveclmod 18407 . . . . . . . . . 10  |-  ( W  e.  LVec  ->  W  e. 
LMod )
31, 2syl 17 . . . . . . . . 9  |-  ( ph  ->  W  e.  LMod )
4 lspdisj.x . . . . . . . . 9  |-  ( ph  ->  X  e.  V )
5 eqid 2471 . . . . . . . . . 10  |-  (Scalar `  W )  =  (Scalar `  W )
6 eqid 2471 . . . . . . . . . 10  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
7 lspdisj.v . . . . . . . . . 10  |-  V  =  ( Base `  W
)
8 eqid 2471 . . . . . . . . . 10  |-  ( .s
`  W )  =  ( .s `  W
)
9 lspdisj.n . . . . . . . . . 10  |-  N  =  ( LSpan `  W )
105, 6, 7, 8, 9lspsnel 18304 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
v  e.  ( N `
 { X }
)  <->  E. k  e.  (
Base `  (Scalar `  W
) ) v  =  ( k ( .s
`  W ) X ) ) )
113, 4, 10syl2anc 673 . . . . . . . 8  |-  ( ph  ->  ( v  e.  ( N `  { X } )  <->  E. k  e.  ( Base `  (Scalar `  W ) ) v  =  ( k ( .s `  W ) X ) ) )
1211biimpa 492 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( N `  { X } ) )  ->  E. k  e.  ( Base `  (Scalar `  W
) ) v  =  ( k ( .s
`  W ) X ) )
1312adantrr 731 . . . . . 6  |-  ( (
ph  /\  ( v  e.  ( N `  { X } )  /\  v  e.  U ) )  ->  E. k  e.  ( Base `  (Scalar `  W
) ) v  =  ( k ( .s
`  W ) X ) )
14 simprr 774 . . . . . . . . . 10  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  -> 
v  =  ( k ( .s `  W
) X ) )
15 lspdisj.e . . . . . . . . . . . . 13  |-  ( ph  ->  -.  X  e.  U
)
1615ad2antrr 740 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  ->  -.  X  e.  U
)
17 simplr 770 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  -> 
v  e.  U )
1814, 17eqeltrrd 2550 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  -> 
( k ( .s
`  W ) X )  e.  U )
19 eqid 2471 . . . . . . . . . . . . . . . 16  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
20 lspdisj.s . . . . . . . . . . . . . . . 16  |-  S  =  ( LSubSp `  W )
211ad2antrr 740 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  ->  W  e.  LVec )
22 lspdisj.u . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  U  e.  S )
2322ad2antrr 740 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  ->  U  e.  S )
244ad2antrr 740 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  ->  X  e.  V )
25 simprl 772 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  -> 
k  e.  ( Base `  (Scalar `  W )
) )
267, 8, 5, 6, 19, 20, 21, 23, 24, 25lssvs0or 18411 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  -> 
( ( k ( .s `  W ) X )  e.  U  <->  ( k  =  ( 0g
`  (Scalar `  W )
)  \/  X  e.  U ) ) )
2718, 26mpbid 215 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  -> 
( k  =  ( 0g `  (Scalar `  W ) )  \/  X  e.  U ) )
2827orcomd 395 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  -> 
( X  e.  U  \/  k  =  ( 0g `  (Scalar `  W
) ) ) )
2928ord 384 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  -> 
( -.  X  e.  U  ->  k  =  ( 0g `  (Scalar `  W ) ) ) )
3016, 29mpd 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  -> 
k  =  ( 0g
`  (Scalar `  W )
) )
3130oveq1d 6323 . . . . . . . . . 10  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  -> 
( k ( .s
`  W ) X )  =  ( ( 0g `  (Scalar `  W ) ) ( .s `  W ) X ) )
323ad2antrr 740 . . . . . . . . . . 11  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  ->  W  e.  LMod )
33 lspdisj.o . . . . . . . . . . . 12  |-  .0.  =  ( 0g `  W )
347, 5, 8, 19, 33lmod0vs 18202 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( 0g `  (Scalar `  W ) ) ( .s `  W ) X )  =  .0.  )
3532, 24, 34syl2anc 673 . . . . . . . . . 10  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  -> 
( ( 0g `  (Scalar `  W ) ) ( .s `  W
) X )  =  .0.  )
3614, 31, 353eqtrd 2509 . . . . . . . . 9  |-  ( ( ( ph  /\  v  e.  U )  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  v  =  ( k ( .s
`  W ) X ) ) )  -> 
v  =  .0.  )
3736exp32 616 . . . . . . . 8  |-  ( (
ph  /\  v  e.  U )  ->  (
k  e.  ( Base `  (Scalar `  W )
)  ->  ( v  =  ( k ( .s `  W ) X )  ->  v  =  .0.  ) ) )
3837adantrl 730 . . . . . . 7  |-  ( (
ph  /\  ( v  e.  ( N `  { X } )  /\  v  e.  U ) )  -> 
( k  e.  (
Base `  (Scalar `  W
) )  ->  (
v  =  ( k ( .s `  W
) X )  -> 
v  =  .0.  )
) )
3938rexlimdv 2870 . . . . . 6  |-  ( (
ph  /\  ( v  e.  ( N `  { X } )  /\  v  e.  U ) )  -> 
( E. k  e.  ( Base `  (Scalar `  W ) ) v  =  ( k ( .s `  W ) X )  ->  v  =  .0.  ) )
4013, 39mpd 15 . . . . 5  |-  ( (
ph  /\  ( v  e.  ( N `  { X } )  /\  v  e.  U ) )  -> 
v  =  .0.  )
4140ex 441 . . . 4  |-  ( ph  ->  ( ( v  e.  ( N `  { X } )  /\  v  e.  U )  ->  v  =  .0.  ) )
42 elin 3608 . . . 4  |-  ( v  e.  ( ( N `
 { X }
)  i^i  U )  <->  ( v  e.  ( N `
 { X }
)  /\  v  e.  U ) )
43 elsn 3973 . . . 4  |-  ( v  e.  {  .0.  }  <->  v  =  .0.  )
4441, 42, 433imtr4g 278 . . 3  |-  ( ph  ->  ( v  e.  ( ( N `  { X } )  i^i  U
)  ->  v  e.  {  .0.  } ) )
4544ssrdv 3424 . 2  |-  ( ph  ->  ( ( N `  { X } )  i^i 
U )  C_  {  .0.  } )
467, 20, 9lspsncl 18278 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  e.  S
)
473, 4, 46syl2anc 673 . . . 4  |-  ( ph  ->  ( N `  { X } )  e.  S
)
4833, 20lss0ss 18250 . . . 4  |-  ( ( W  e.  LMod  /\  ( N `  { X } )  e.  S
)  ->  {  .0.  } 
C_  ( N `  { X } ) )
493, 47, 48syl2anc 673 . . 3  |-  ( ph  ->  {  .0.  }  C_  ( N `  { X } ) )
5033, 20lss0ss 18250 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  {  .0.  } 
C_  U )
513, 22, 50syl2anc 673 . . 3  |-  ( ph  ->  {  .0.  }  C_  U )
5249, 51ssind 3647 . 2  |-  ( ph  ->  {  .0.  }  C_  ( ( N `  { X } )  i^i 
U ) )
5345, 52eqssd 3435 1  |-  ( ph  ->  ( ( N `  { X } )  i^i 
U )  =  {  .0.  } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    = wceq 1452    e. wcel 1904   E.wrex 2757    i^i cin 3389    C_ wss 3390   {csn 3959   ` cfv 5589  (class class class)co 6308   Basecbs 15199  Scalarcsca 15271   .scvsca 15272   0gc0g 15416   LModclmod 18169   LSubSpclss 18233   LSpanclspn 18272   LVecclvec 18403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-tpos 6991  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-2 10690  df-3 10691  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-0g 15418  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-grp 16751  df-minusg 16752  df-sbg 16753  df-mgp 17802  df-ur 17814  df-ring 17860  df-oppr 17929  df-dvdsr 17947  df-unit 17948  df-invr 17978  df-drng 18055  df-lmod 18171  df-lss 18234  df-lsp 18273  df-lvec 18404
This theorem is referenced by:  lspdisjb  18427  lspdisj2  18428  lvecindp  18439
  Copyright terms: Public domain W3C validator