MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmsubm Structured version   Unicode version

Theorem lsmsubm 16997
Description: The sum of two commuting submonoids is a submonoid. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmsubg.p  |-  .(+)  =  (
LSSum `  G )
lsmsubg.z  |-  Z  =  (Cntz `  G )
Assertion
Ref Expression
lsmsubm  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( T  .(+)  U )  e.  (SubMnd `  G ) )

Proof of Theorem lsmsubm
Dummy variables  a 
b  c  d  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submrcl 16301 . . . 4  |-  ( T  e.  (SubMnd `  G
)  ->  G  e.  Mnd )
213ad2ant1 1018 . . 3  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  G  e.  Mnd )
3 eqid 2402 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
43submss 16305 . . . 4  |-  ( T  e.  (SubMnd `  G
)  ->  T  C_  ( Base `  G ) )
543ad2ant1 1018 . . 3  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  T  C_  ( Base `  G ) )
63submss 16305 . . . 4  |-  ( U  e.  (SubMnd `  G
)  ->  U  C_  ( Base `  G ) )
763ad2ant2 1019 . . 3  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  U  C_  ( Base `  G ) )
8 lsmsubg.p . . . 4  |-  .(+)  =  (
LSSum `  G )
93, 8lsmssv 16987 . . 3  |-  ( ( G  e.  Mnd  /\  T  C_  ( Base `  G
)  /\  U  C_  ( Base `  G ) )  ->  ( T  .(+)  U )  C_  ( Base `  G ) )
102, 5, 7, 9syl3anc 1230 . 2  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( T  .(+)  U )  C_  ( Base `  G ) )
11 simp2 998 . . . 4  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  U  e.  (SubMnd `  G ) )
123, 8lsmub1x 16990 . . . 4  |-  ( ( T  C_  ( Base `  G )  /\  U  e.  (SubMnd `  G )
)  ->  T  C_  ( T  .(+)  U ) )
135, 11, 12syl2anc 659 . . 3  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  T  C_  ( T  .(+)  U ) )
14 eqid 2402 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
1514subm0cl 16307 . . . 4  |-  ( T  e.  (SubMnd `  G
)  ->  ( 0g `  G )  e.  T
)
16153ad2ant1 1018 . . 3  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( 0g `  G )  e.  T
)
1713, 16sseldd 3443 . 2  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( 0g `  G )  e.  ( T  .(+)  U )
)
18 eqid 2402 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
193, 18, 8lsmelvalx 16984 . . . . . 6  |-  ( ( G  e.  Mnd  /\  T  C_  ( Base `  G
)  /\  U  C_  ( Base `  G ) )  ->  ( x  e.  ( T  .(+)  U )  <->  E. a  e.  T  E. c  e.  U  x  =  ( a
( +g  `  G ) c ) ) )
202, 5, 7, 19syl3anc 1230 . . . . 5  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( x  e.  ( T  .(+)  U )  <->  E. a  e.  T  E. c  e.  U  x  =  ( a
( +g  `  G ) c ) ) )
213, 18, 8lsmelvalx 16984 . . . . . 6  |-  ( ( G  e.  Mnd  /\  T  C_  ( Base `  G
)  /\  U  C_  ( Base `  G ) )  ->  ( y  e.  ( T  .(+)  U )  <->  E. b  e.  T  E. d  e.  U  y  =  ( b
( +g  `  G ) d ) ) )
222, 5, 7, 21syl3anc 1230 . . . . 5  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( y  e.  ( T  .(+)  U )  <->  E. b  e.  T  E. d  e.  U  y  =  ( b
( +g  `  G ) d ) ) )
2320, 22anbi12d 709 . . . 4  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U ) )  <->  ( E. a  e.  T  E. c  e.  U  x  =  ( a ( +g  `  G ) c )  /\  E. b  e.  T  E. d  e.  U  y  =  ( b ( +g  `  G
) d ) ) ) )
24 reeanv 2975 . . . . 5  |-  ( E. a  e.  T  E. b  e.  T  ( E. c  e.  U  x  =  ( a
( +g  `  G ) c )  /\  E. d  e.  U  y  =  ( b ( +g  `  G ) d ) )  <->  ( E. a  e.  T  E. c  e.  U  x  =  ( a ( +g  `  G ) c )  /\  E. b  e.  T  E. d  e.  U  y  =  ( b ( +g  `  G ) d ) ) )
25 reeanv 2975 . . . . . . 7  |-  ( E. c  e.  U  E. d  e.  U  (
x  =  ( a ( +g  `  G
) c )  /\  y  =  ( b
( +g  `  G ) d ) )  <->  ( E. c  e.  U  x  =  ( a ( +g  `  G ) c )  /\  E. d  e.  U  y  =  ( b ( +g  `  G ) d ) ) )
262adantr 463 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  G  e.  Mnd )
275adantr 463 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  T  C_  ( Base `  G
) )
28 simprll 764 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  a  e.  T )
2927, 28sseldd 3443 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  a  e.  ( Base `  G
) )
30 simprlr 765 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  b  e.  T )
3127, 30sseldd 3443 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  b  e.  ( Base `  G
) )
327adantr 463 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  U  C_  ( Base `  G
) )
33 simprrl 766 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  c  e.  U )
3432, 33sseldd 3443 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  c  e.  ( Base `  G
) )
35 simprrr 767 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  d  e.  U )
3632, 35sseldd 3443 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  d  e.  ( Base `  G
) )
37 simpl3 1002 . . . . . . . . . . . . . 14  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  T  C_  ( Z `  U
) )
3837, 30sseldd 3443 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  b  e.  ( Z `  U
) )
39 lsmsubg.z . . . . . . . . . . . . . 14  |-  Z  =  (Cntz `  G )
4018, 39cntzi 16691 . . . . . . . . . . . . 13  |-  ( ( b  e.  ( Z `
 U )  /\  c  e.  U )  ->  ( b ( +g  `  G ) c )  =  ( c ( +g  `  G ) b ) )
4138, 33, 40syl2anc 659 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  (
b ( +g  `  G
) c )  =  ( c ( +g  `  G ) b ) )
423, 18, 26, 29, 31, 34, 36, 41mnd4g 16261 . . . . . . . . . . 11  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  (
( a ( +g  `  G ) b ) ( +g  `  G
) ( c ( +g  `  G ) d ) )  =  ( ( a ( +g  `  G ) c ) ( +g  `  G ) ( b ( +g  `  G
) d ) ) )
43 simpl1 1000 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  T  e.  (SubMnd `  G )
)
4418submcl 16308 . . . . . . . . . . . . 13  |-  ( ( T  e.  (SubMnd `  G )  /\  a  e.  T  /\  b  e.  T )  ->  (
a ( +g  `  G
) b )  e.  T )
4543, 28, 30, 44syl3anc 1230 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  (
a ( +g  `  G
) b )  e.  T )
46 simpl2 1001 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  U  e.  (SubMnd `  G )
)
4718submcl 16308 . . . . . . . . . . . . 13  |-  ( ( U  e.  (SubMnd `  G )  /\  c  e.  U  /\  d  e.  U )  ->  (
c ( +g  `  G
) d )  e.  U )
4846, 33, 35, 47syl3anc 1230 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  (
c ( +g  `  G
) d )  e.  U )
493, 18, 8lsmelvalix 16985 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Mnd  /\  T  C_  ( Base `  G )  /\  U  C_  ( Base `  G
) )  /\  (
( a ( +g  `  G ) b )  e.  T  /\  (
c ( +g  `  G
) d )  e.  U ) )  -> 
( ( a ( +g  `  G ) b ) ( +g  `  G ) ( c ( +g  `  G
) d ) )  e.  ( T  .(+)  U ) )
5026, 27, 32, 45, 48, 49syl32anc 1238 . . . . . . . . . . 11  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  (
( a ( +g  `  G ) b ) ( +g  `  G
) ( c ( +g  `  G ) d ) )  e.  ( T  .(+)  U ) )
5142, 50eqeltrrd 2491 . . . . . . . . . 10  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  (
( a ( +g  `  G ) c ) ( +g  `  G
) ( b ( +g  `  G ) d ) )  e.  ( T  .(+)  U ) )
52 oveq12 6287 . . . . . . . . . . 11  |-  ( ( x  =  ( a ( +g  `  G
) c )  /\  y  =  ( b
( +g  `  G ) d ) )  -> 
( x ( +g  `  G ) y )  =  ( ( a ( +g  `  G
) c ) ( +g  `  G ) ( b ( +g  `  G ) d ) ) )
5352eleq1d 2471 . . . . . . . . . 10  |-  ( ( x  =  ( a ( +g  `  G
) c )  /\  y  =  ( b
( +g  `  G ) d ) )  -> 
( ( x ( +g  `  G ) y )  e.  ( T  .(+)  U )  <->  ( ( a ( +g  `  G ) c ) ( +g  `  G
) ( b ( +g  `  G ) d ) )  e.  ( T  .(+)  U ) ) )
5451, 53syl5ibrcom 222 . . . . . . . . 9  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  (
( x  =  ( a ( +g  `  G
) c )  /\  y  =  ( b
( +g  `  G ) d ) )  -> 
( x ( +g  `  G ) y )  e.  ( T  .(+)  U ) ) )
5554anassrs 646 . . . . . . . 8  |-  ( ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `  U
) )  /\  (
a  e.  T  /\  b  e.  T )
)  /\  ( c  e.  U  /\  d  e.  U ) )  -> 
( ( x  =  ( a ( +g  `  G ) c )  /\  y  =  ( b ( +g  `  G
) d ) )  ->  ( x ( +g  `  G ) y )  e.  ( T  .(+)  U )
) )
5655rexlimdvva 2903 . . . . . . 7  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( a  e.  T  /\  b  e.  T ) )  -> 
( E. c  e.  U  E. d  e.  U  ( x  =  ( a ( +g  `  G ) c )  /\  y  =  ( b ( +g  `  G
) d ) )  ->  ( x ( +g  `  G ) y )  e.  ( T  .(+)  U )
) )
5725, 56syl5bir 218 . . . . . 6  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( a  e.  T  /\  b  e.  T ) )  -> 
( ( E. c  e.  U  x  =  ( a ( +g  `  G ) c )  /\  E. d  e.  U  y  =  ( b ( +g  `  G
) d ) )  ->  ( x ( +g  `  G ) y )  e.  ( T  .(+)  U )
) )
5857rexlimdvva 2903 . . . . 5  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( E. a  e.  T  E. b  e.  T  ( E. c  e.  U  x  =  ( a ( +g  `  G ) c )  /\  E. d  e.  U  y  =  ( b ( +g  `  G ) d ) )  -> 
( x ( +g  `  G ) y )  e.  ( T  .(+)  U ) ) )
5924, 58syl5bir 218 . . . 4  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( ( E. a  e.  T  E. c  e.  U  x  =  ( a ( +g  `  G ) c )  /\  E. b  e.  T  E. d  e.  U  y  =  ( b ( +g  `  G ) d ) )  -> 
( x ( +g  `  G ) y )  e.  ( T  .(+)  U ) ) )
6023, 59sylbid 215 . . 3  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U ) )  ->  ( x
( +g  `  G ) y )  e.  ( T  .(+)  U )
) )
6160ralrimivv 2824 . 2  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  A. x  e.  ( T  .(+)  U ) A. y  e.  ( T  .(+)  U ) ( x ( +g  `  G
) y )  e.  ( T  .(+)  U ) )
623, 14, 18issubm 16302 . . 3  |-  ( G  e.  Mnd  ->  (
( T  .(+)  U )  e.  (SubMnd `  G
)  <->  ( ( T 
.(+)  U )  C_  ( Base `  G )  /\  ( 0g `  G )  e.  ( T  .(+)  U )  /\  A. x  e.  ( T  .(+)  U ) A. y  e.  ( T  .(+)  U )
( x ( +g  `  G ) y )  e.  ( T  .(+)  U ) ) ) )
632, 62syl 17 . 2  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( ( T 
.(+)  U )  e.  (SubMnd `  G )  <->  ( ( T  .(+)  U )  C_  ( Base `  G )  /\  ( 0g `  G
)  e.  ( T 
.(+)  U )  /\  A. x  e.  ( T  .(+) 
U ) A. y  e.  ( T  .(+)  U ) ( x ( +g  `  G ) y )  e.  ( T  .(+)  U ) ) ) )
6410, 17, 61, 63mpbir3and 1180 1  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( T  .(+)  U )  e.  (SubMnd `  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842   A.wral 2754   E.wrex 2755    C_ wss 3414   ` cfv 5569  (class class class)co 6278   Basecbs 14841   +g cplusg 14909   0gc0g 15054   Mndcmnd 16243  SubMndcsubmnd 16289  Cntzccntz 16677   LSSumclsm 16978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-nn 10577  df-2 10635  df-ndx 14844  df-slot 14845  df-base 14846  df-sets 14847  df-ress 14848  df-plusg 14922  df-0g 15056  df-mgm 16196  df-sgrp 16235  df-mnd 16245  df-submnd 16291  df-cntz 16679  df-lsm 16980
This theorem is referenced by:  lsmsubg  16998
  Copyright terms: Public domain W3C validator