MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmspsn Structured version   Unicode version

Theorem lsmspsn 17187
Description: Member of subspace sum of spans of singletons. (Contributed by NM, 8-Apr-2015.)
Hypotheses
Ref Expression
lsmspsn.v  |-  V  =  ( Base `  W
)
lsmspsn.a  |-  .+  =  ( +g  `  W )
lsmspsn.f  |-  F  =  (Scalar `  W )
lsmspsn.k  |-  K  =  ( Base `  F
)
lsmspsn.t  |-  .x.  =  ( .s `  W )
lsmspsn.p  |-  .(+)  =  (
LSSum `  W )
lsmspsn.n  |-  N  =  ( LSpan `  W )
lsmspsn.w  |-  ( ph  ->  W  e.  LMod )
lsmspsn.x  |-  ( ph  ->  X  e.  V )
lsmspsn.y  |-  ( ph  ->  Y  e.  V )
Assertion
Ref Expression
lsmspsn  |-  ( ph  ->  ( U  e.  ( ( N `  { X } )  .(+)  ( N `
 { Y }
) )  <->  E. j  e.  K  E. k  e.  K  U  =  ( ( j  .x.  X )  .+  (
k  .x.  Y )
) ) )
Distinct variable groups:    j, k,  .+    j, F, k    j, K, k    j, N, k    .x. , j, k    U, j, k    j, V, k   
j, W, k    j, X, k    j, Y, k    ph, j, k
Allowed substitution hints:    .(+) ( j, k)

Proof of Theorem lsmspsn
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmspsn.w . . . 4  |-  ( ph  ->  W  e.  LMod )
2 lsmspsn.x . . . 4  |-  ( ph  ->  X  e.  V )
3 lsmspsn.v . . . . 5  |-  V  =  ( Base `  W
)
4 lsmspsn.n . . . . 5  |-  N  =  ( LSpan `  W )
53, 4lspsnsubg 17083 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  e.  (SubGrp `  W ) )
61, 2, 5syl2anc 661 . . 3  |-  ( ph  ->  ( N `  { X } )  e.  (SubGrp `  W ) )
7 lsmspsn.y . . . 4  |-  ( ph  ->  Y  e.  V )
83, 4lspsnsubg 17083 . . . 4  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  ( N `  { Y } )  e.  (SubGrp `  W ) )
91, 7, 8syl2anc 661 . . 3  |-  ( ph  ->  ( N `  { Y } )  e.  (SubGrp `  W ) )
10 lsmspsn.a . . . 4  |-  .+  =  ( +g  `  W )
11 lsmspsn.p . . . 4  |-  .(+)  =  (
LSSum `  W )
1210, 11lsmelval 16169 . . 3  |-  ( ( ( N `  { X } )  e.  (SubGrp `  W )  /\  ( N `  { Y } )  e.  (SubGrp `  W ) )  -> 
( U  e.  ( ( N `  { X } )  .(+)  ( N `
 { Y }
) )  <->  E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) U  =  ( v  .+  w
) ) )
136, 9, 12syl2anc 661 . 2  |-  ( ph  ->  ( U  e.  ( ( N `  { X } )  .(+)  ( N `
 { Y }
) )  <->  E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) U  =  ( v  .+  w
) ) )
14 lsmspsn.f . . . . . . . . . 10  |-  F  =  (Scalar `  W )
15 lsmspsn.k . . . . . . . . . 10  |-  K  =  ( Base `  F
)
16 lsmspsn.t . . . . . . . . . 10  |-  .x.  =  ( .s `  W )
1714, 15, 3, 16, 4lspsnel 17106 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
v  e.  ( N `
 { X }
)  <->  E. j  e.  K  v  =  ( j  .x.  X ) ) )
181, 2, 17syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( v  e.  ( N `  { X } )  <->  E. j  e.  K  v  =  ( j  .x.  X
) ) )
1914, 15, 3, 16, 4lspsnel 17106 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  (
w  e.  ( N `
 { Y }
)  <->  E. k  e.  K  w  =  ( k  .x.  Y ) ) )
201, 7, 19syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( w  e.  ( N `  { Y } )  <->  E. k  e.  K  w  =  ( k  .x.  Y
) ) )
2118, 20anbi12d 710 . . . . . . 7  |-  ( ph  ->  ( ( v  e.  ( N `  { X } )  /\  w  e.  ( N `  { Y } ) )  <->  ( E. j  e.  K  v  =  ( j  .x.  X )  /\  E. k  e.  K  w  =  ( k  .x.  Y ) ) ) )
2221biimpa 484 . . . . . 6  |-  ( (
ph  /\  ( v  e.  ( N `  { X } )  /\  w  e.  ( N `  { Y } ) ) )  ->  ( E. j  e.  K  v  =  ( j  .x.  X
)  /\  E. k  e.  K  w  =  ( k  .x.  Y
) ) )
2322biantrurd 508 . . . . 5  |-  ( (
ph  /\  ( v  e.  ( N `  { X } )  /\  w  e.  ( N `  { Y } ) ) )  ->  ( U  =  ( v  .+  w
)  <->  ( ( E. j  e.  K  v  =  ( j  .x.  X )  /\  E. k  e.  K  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) ) ) )
24 r19.41v 2894 . . . . . . 7  |-  ( E. k  e.  K  ( ( v  =  ( j  .x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w
) )  <->  ( E. k  e.  K  (
v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) ) )
2524rexbii 2761 . . . . . 6  |-  ( E. j  e.  K  E. k  e.  K  (
( v  =  ( j  .x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w
) )  <->  E. j  e.  K  ( E. k  e.  K  (
v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) ) )
26 r19.41v 2894 . . . . . 6  |-  ( E. j  e.  K  ( E. k  e.  K  ( v  =  ( j  .x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w
) )  <->  ( E. j  e.  K  E. k  e.  K  (
v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) ) )
27 reeanv 2909 . . . . . . 7  |-  ( E. j  e.  K  E. k  e.  K  (
v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  <->  ( E. j  e.  K  v  =  ( j  .x.  X )  /\  E. k  e.  K  w  =  ( k  .x.  Y ) ) )
2827anbi1i 695 . . . . . 6  |-  ( ( E. j  e.  K  E. k  e.  K  ( v  =  ( j  .x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w
) )  <->  ( ( E. j  e.  K  v  =  ( j  .x.  X )  /\  E. k  e.  K  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) ) )
2925, 26, 283bitrri 272 . . . . 5  |-  ( ( ( E. j  e.  K  v  =  ( j  .x.  X )  /\  E. k  e.  K  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w
) )  <->  E. j  e.  K  E. k  e.  K  ( (
v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) ) )
3023, 29syl6bb 261 . . . 4  |-  ( (
ph  /\  ( v  e.  ( N `  { X } )  /\  w  e.  ( N `  { Y } ) ) )  ->  ( U  =  ( v  .+  w
)  <->  E. j  e.  K  E. k  e.  K  ( ( v  =  ( j  .x.  X
)  /\  w  =  ( k  .x.  Y
) )  /\  U  =  ( v  .+  w ) ) ) )
31302rexbidva 2777 . . 3  |-  ( ph  ->  ( E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) U  =  ( v  .+  w
)  <->  E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) E. j  e.  K  E. k  e.  K  ( (
v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) ) ) )
32 rexrot4 2905 . . 3  |-  ( E. v  e.  ( N `
 { X }
) E. w  e.  ( N `  { Y } ) E. j  e.  K  E. k  e.  K  ( (
v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) )  <->  E. j  e.  K  E. k  e.  K  E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) ( ( v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) ) )
3331, 32syl6bb 261 . 2  |-  ( ph  ->  ( E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) U  =  ( v  .+  w
)  <->  E. j  e.  K  E. k  e.  K  E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) ( ( v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) ) ) )
341adantr 465 . . . . 5  |-  ( (
ph  /\  ( j  e.  K  /\  k  e.  K ) )  ->  W  e.  LMod )
35 simprl 755 . . . . 5  |-  ( (
ph  /\  ( j  e.  K  /\  k  e.  K ) )  -> 
j  e.  K )
362adantr 465 . . . . 5  |-  ( (
ph  /\  ( j  e.  K  /\  k  e.  K ) )  ->  X  e.  V )
373, 16, 14, 15, 4, 34, 35, 36lspsneli 17104 . . . 4  |-  ( (
ph  /\  ( j  e.  K  /\  k  e.  K ) )  -> 
( j  .x.  X
)  e.  ( N `
 { X }
) )
38 simprr 756 . . . . 5  |-  ( (
ph  /\  ( j  e.  K  /\  k  e.  K ) )  -> 
k  e.  K )
397adantr 465 . . . . 5  |-  ( (
ph  /\  ( j  e.  K  /\  k  e.  K ) )  ->  Y  e.  V )
403, 16, 14, 15, 4, 34, 38, 39lspsneli 17104 . . . 4  |-  ( (
ph  /\  ( j  e.  K  /\  k  e.  K ) )  -> 
( k  .x.  Y
)  e.  ( N `
 { Y }
) )
41 oveq1 6119 . . . . . 6  |-  ( v  =  ( j  .x.  X )  ->  (
v  .+  w )  =  ( ( j 
.x.  X )  .+  w ) )
4241eqeq2d 2454 . . . . 5  |-  ( v  =  ( j  .x.  X )  ->  ( U  =  ( v  .+  w )  <->  U  =  ( ( j  .x.  X )  .+  w
) ) )
43 oveq2 6120 . . . . . 6  |-  ( w  =  ( k  .x.  Y )  ->  (
( j  .x.  X
)  .+  w )  =  ( ( j 
.x.  X )  .+  ( k  .x.  Y
) ) )
4443eqeq2d 2454 . . . . 5  |-  ( w  =  ( k  .x.  Y )  ->  ( U  =  ( (
j  .x.  X )  .+  w )  <->  U  =  ( ( j  .x.  X )  .+  (
k  .x.  Y )
) ) )
4542, 44ceqsrex2v 3116 . . . 4  |-  ( ( ( j  .x.  X
)  e.  ( N `
 { X }
)  /\  ( k  .x.  Y )  e.  ( N `  { Y } ) )  -> 
( E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) ( ( v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) )  <->  U  =  ( ( j  .x.  X )  .+  (
k  .x.  Y )
) ) )
4637, 40, 45syl2anc 661 . . 3  |-  ( (
ph  /\  ( j  e.  K  /\  k  e.  K ) )  -> 
( E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) ( ( v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) )  <->  U  =  ( ( j  .x.  X )  .+  (
k  .x.  Y )
) ) )
47462rexbidva 2777 . 2  |-  ( ph  ->  ( E. j  e.  K  E. k  e.  K  E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) ( ( v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) )  <->  E. j  e.  K  E. k  e.  K  U  =  ( ( j  .x.  X )  .+  (
k  .x.  Y )
) ) )
4813, 33, 473bitrd 279 1  |-  ( ph  ->  ( U  e.  ( ( N `  { X } )  .(+)  ( N `
 { Y }
) )  <->  E. j  e.  K  E. k  e.  K  U  =  ( ( j  .x.  X )  .+  (
k  .x.  Y )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   E.wrex 2737   {csn 3898   ` cfv 5439  (class class class)co 6112   Basecbs 14195   +g cplusg 14259  Scalarcsca 14262   .scvsca 14263  SubGrpcsubg 15696   LSSumclsm 16154   LModclmod 16970   LSpanclspn 17074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1st 6598  df-2nd 6599  df-recs 6853  df-rdg 6887  df-er 7122  df-en 7332  df-dom 7333  df-sdom 7334  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-nn 10344  df-2 10401  df-ndx 14198  df-slot 14199  df-base 14200  df-sets 14201  df-ress 14202  df-plusg 14272  df-0g 14401  df-mnd 15436  df-grp 15566  df-minusg 15567  df-sbg 15568  df-subg 15699  df-lsm 16156  df-mgp 16614  df-ur 16626  df-rng 16669  df-lmod 16972  df-lss 17036  df-lsp 17075
This theorem is referenced by:  lsppr  17196  baerlem3lem2  35451  baerlem5alem2  35452  baerlem5blem2  35453
  Copyright terms: Public domain W3C validator