MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmspsn Structured version   Unicode version

Theorem lsmspsn 17601
Description: Member of subspace sum of spans of singletons. (Contributed by NM, 8-Apr-2015.)
Hypotheses
Ref Expression
lsmspsn.v  |-  V  =  ( Base `  W
)
lsmspsn.a  |-  .+  =  ( +g  `  W )
lsmspsn.f  |-  F  =  (Scalar `  W )
lsmspsn.k  |-  K  =  ( Base `  F
)
lsmspsn.t  |-  .x.  =  ( .s `  W )
lsmspsn.p  |-  .(+)  =  (
LSSum `  W )
lsmspsn.n  |-  N  =  ( LSpan `  W )
lsmspsn.w  |-  ( ph  ->  W  e.  LMod )
lsmspsn.x  |-  ( ph  ->  X  e.  V )
lsmspsn.y  |-  ( ph  ->  Y  e.  V )
Assertion
Ref Expression
lsmspsn  |-  ( ph  ->  ( U  e.  ( ( N `  { X } )  .(+)  ( N `
 { Y }
) )  <->  E. j  e.  K  E. k  e.  K  U  =  ( ( j  .x.  X )  .+  (
k  .x.  Y )
) ) )
Distinct variable groups:    j, k,  .+    j, F, k    j, K, k    j, N, k    .x. , j, k    U, j, k    j, V, k   
j, W, k    j, X, k    j, Y, k    ph, j, k
Allowed substitution hints:    .(+) ( j, k)

Proof of Theorem lsmspsn
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmspsn.w . . . 4  |-  ( ph  ->  W  e.  LMod )
2 lsmspsn.x . . . 4  |-  ( ph  ->  X  e.  V )
3 lsmspsn.v . . . . 5  |-  V  =  ( Base `  W
)
4 lsmspsn.n . . . . 5  |-  N  =  ( LSpan `  W )
53, 4lspsnsubg 17497 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  e.  (SubGrp `  W ) )
61, 2, 5syl2anc 661 . . 3  |-  ( ph  ->  ( N `  { X } )  e.  (SubGrp `  W ) )
7 lsmspsn.y . . . 4  |-  ( ph  ->  Y  e.  V )
83, 4lspsnsubg 17497 . . . 4  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  ( N `  { Y } )  e.  (SubGrp `  W ) )
91, 7, 8syl2anc 661 . . 3  |-  ( ph  ->  ( N `  { Y } )  e.  (SubGrp `  W ) )
10 lsmspsn.a . . . 4  |-  .+  =  ( +g  `  W )
11 lsmspsn.p . . . 4  |-  .(+)  =  (
LSSum `  W )
1210, 11lsmelval 16542 . . 3  |-  ( ( ( N `  { X } )  e.  (SubGrp `  W )  /\  ( N `  { Y } )  e.  (SubGrp `  W ) )  -> 
( U  e.  ( ( N `  { X } )  .(+)  ( N `
 { Y }
) )  <->  E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) U  =  ( v  .+  w
) ) )
136, 9, 12syl2anc 661 . 2  |-  ( ph  ->  ( U  e.  ( ( N `  { X } )  .(+)  ( N `
 { Y }
) )  <->  E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) U  =  ( v  .+  w
) ) )
14 lsmspsn.f . . . . . . . . . 10  |-  F  =  (Scalar `  W )
15 lsmspsn.k . . . . . . . . . 10  |-  K  =  ( Base `  F
)
16 lsmspsn.t . . . . . . . . . 10  |-  .x.  =  ( .s `  W )
1714, 15, 3, 16, 4lspsnel 17520 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
v  e.  ( N `
 { X }
)  <->  E. j  e.  K  v  =  ( j  .x.  X ) ) )
181, 2, 17syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( v  e.  ( N `  { X } )  <->  E. j  e.  K  v  =  ( j  .x.  X
) ) )
1914, 15, 3, 16, 4lspsnel 17520 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  (
w  e.  ( N `
 { Y }
)  <->  E. k  e.  K  w  =  ( k  .x.  Y ) ) )
201, 7, 19syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( w  e.  ( N `  { Y } )  <->  E. k  e.  K  w  =  ( k  .x.  Y
) ) )
2118, 20anbi12d 710 . . . . . . 7  |-  ( ph  ->  ( ( v  e.  ( N `  { X } )  /\  w  e.  ( N `  { Y } ) )  <->  ( E. j  e.  K  v  =  ( j  .x.  X )  /\  E. k  e.  K  w  =  ( k  .x.  Y ) ) ) )
2221biimpa 484 . . . . . 6  |-  ( (
ph  /\  ( v  e.  ( N `  { X } )  /\  w  e.  ( N `  { Y } ) ) )  ->  ( E. j  e.  K  v  =  ( j  .x.  X
)  /\  E. k  e.  K  w  =  ( k  .x.  Y
) ) )
2322biantrurd 508 . . . . 5  |-  ( (
ph  /\  ( v  e.  ( N `  { X } )  /\  w  e.  ( N `  { Y } ) ) )  ->  ( U  =  ( v  .+  w
)  <->  ( ( E. j  e.  K  v  =  ( j  .x.  X )  /\  E. k  e.  K  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) ) ) )
24 r19.41v 3019 . . . . . . 7  |-  ( E. k  e.  K  ( ( v  =  ( j  .x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w
) )  <->  ( E. k  e.  K  (
v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) ) )
2524rexbii 2969 . . . . . 6  |-  ( E. j  e.  K  E. k  e.  K  (
( v  =  ( j  .x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w
) )  <->  E. j  e.  K  ( E. k  e.  K  (
v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) ) )
26 r19.41v 3019 . . . . . 6  |-  ( E. j  e.  K  ( E. k  e.  K  ( v  =  ( j  .x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w
) )  <->  ( E. j  e.  K  E. k  e.  K  (
v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) ) )
27 reeanv 3034 . . . . . . 7  |-  ( E. j  e.  K  E. k  e.  K  (
v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  <->  ( E. j  e.  K  v  =  ( j  .x.  X )  /\  E. k  e.  K  w  =  ( k  .x.  Y ) ) )
2827anbi1i 695 . . . . . 6  |-  ( ( E. j  e.  K  E. k  e.  K  ( v  =  ( j  .x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w
) )  <->  ( ( E. j  e.  K  v  =  ( j  .x.  X )  /\  E. k  e.  K  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) ) )
2925, 26, 283bitrri 272 . . . . 5  |-  ( ( ( E. j  e.  K  v  =  ( j  .x.  X )  /\  E. k  e.  K  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w
) )  <->  E. j  e.  K  E. k  e.  K  ( (
v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) ) )
3023, 29syl6bb 261 . . . 4  |-  ( (
ph  /\  ( v  e.  ( N `  { X } )  /\  w  e.  ( N `  { Y } ) ) )  ->  ( U  =  ( v  .+  w
)  <->  E. j  e.  K  E. k  e.  K  ( ( v  =  ( j  .x.  X
)  /\  w  =  ( k  .x.  Y
) )  /\  U  =  ( v  .+  w ) ) ) )
31302rexbidva 2984 . . 3  |-  ( ph  ->  ( E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) U  =  ( v  .+  w
)  <->  E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) E. j  e.  K  E. k  e.  K  ( (
v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) ) ) )
32 rexrot4 3030 . . 3  |-  ( E. v  e.  ( N `
 { X }
) E. w  e.  ( N `  { Y } ) E. j  e.  K  E. k  e.  K  ( (
v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) )  <->  E. j  e.  K  E. k  e.  K  E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) ( ( v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) ) )
3331, 32syl6bb 261 . 2  |-  ( ph  ->  ( E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) U  =  ( v  .+  w
)  <->  E. j  e.  K  E. k  e.  K  E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) ( ( v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) ) ) )
341adantr 465 . . . . 5  |-  ( (
ph  /\  ( j  e.  K  /\  k  e.  K ) )  ->  W  e.  LMod )
35 simprl 755 . . . . 5  |-  ( (
ph  /\  ( j  e.  K  /\  k  e.  K ) )  -> 
j  e.  K )
362adantr 465 . . . . 5  |-  ( (
ph  /\  ( j  e.  K  /\  k  e.  K ) )  ->  X  e.  V )
373, 16, 14, 15, 4, 34, 35, 36lspsneli 17518 . . . 4  |-  ( (
ph  /\  ( j  e.  K  /\  k  e.  K ) )  -> 
( j  .x.  X
)  e.  ( N `
 { X }
) )
38 simprr 756 . . . . 5  |-  ( (
ph  /\  ( j  e.  K  /\  k  e.  K ) )  -> 
k  e.  K )
397adantr 465 . . . . 5  |-  ( (
ph  /\  ( j  e.  K  /\  k  e.  K ) )  ->  Y  e.  V )
403, 16, 14, 15, 4, 34, 38, 39lspsneli 17518 . . . 4  |-  ( (
ph  /\  ( j  e.  K  /\  k  e.  K ) )  -> 
( k  .x.  Y
)  e.  ( N `
 { Y }
) )
41 oveq1 6302 . . . . . 6  |-  ( v  =  ( j  .x.  X )  ->  (
v  .+  w )  =  ( ( j 
.x.  X )  .+  w ) )
4241eqeq2d 2481 . . . . 5  |-  ( v  =  ( j  .x.  X )  ->  ( U  =  ( v  .+  w )  <->  U  =  ( ( j  .x.  X )  .+  w
) ) )
43 oveq2 6303 . . . . . 6  |-  ( w  =  ( k  .x.  Y )  ->  (
( j  .x.  X
)  .+  w )  =  ( ( j 
.x.  X )  .+  ( k  .x.  Y
) ) )
4443eqeq2d 2481 . . . . 5  |-  ( w  =  ( k  .x.  Y )  ->  ( U  =  ( (
j  .x.  X )  .+  w )  <->  U  =  ( ( j  .x.  X )  .+  (
k  .x.  Y )
) ) )
4542, 44ceqsrex2v 3244 . . . 4  |-  ( ( ( j  .x.  X
)  e.  ( N `
 { X }
)  /\  ( k  .x.  Y )  e.  ( N `  { Y } ) )  -> 
( E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) ( ( v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) )  <->  U  =  ( ( j  .x.  X )  .+  (
k  .x.  Y )
) ) )
4637, 40, 45syl2anc 661 . . 3  |-  ( (
ph  /\  ( j  e.  K  /\  k  e.  K ) )  -> 
( E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) ( ( v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) )  <->  U  =  ( ( j  .x.  X )  .+  (
k  .x.  Y )
) ) )
47462rexbidva 2984 . 2  |-  ( ph  ->  ( E. j  e.  K  E. k  e.  K  E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) ( ( v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) )  <->  E. j  e.  K  E. k  e.  K  U  =  ( ( j  .x.  X )  .+  (
k  .x.  Y )
) ) )
4813, 33, 473bitrd 279 1  |-  ( ph  ->  ( U  e.  ( ( N `  { X } )  .(+)  ( N `
 { Y }
) )  <->  E. j  e.  K  E. k  e.  K  U  =  ( ( j  .x.  X )  .+  (
k  .x.  Y )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   E.wrex 2818   {csn 4033   ` cfv 5594  (class class class)co 6295   Basecbs 14507   +g cplusg 14572  Scalarcsca 14575   .scvsca 14576  SubGrpcsubg 16067   LSSumclsm 16527   LModclmod 17383   LSpanclspn 17488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-2 10606  df-ndx 14510  df-slot 14511  df-base 14512  df-sets 14513  df-ress 14514  df-plusg 14585  df-0g 14714  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-grp 15929  df-minusg 15930  df-sbg 15931  df-subg 16070  df-lsm 16529  df-mgp 17014  df-ur 17026  df-ring 17072  df-lmod 17385  df-lss 17450  df-lsp 17489
This theorem is referenced by:  lsppr  17610  baerlem3lem2  36908  baerlem5alem2  36909  baerlem5blem2  36910
  Copyright terms: Public domain W3C validator