MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmspsn Structured version   Unicode version

Theorem lsmspsn 18250
Description: Member of subspace sum of spans of singletons. (Contributed by NM, 8-Apr-2015.)
Hypotheses
Ref Expression
lsmspsn.v  |-  V  =  ( Base `  W
)
lsmspsn.a  |-  .+  =  ( +g  `  W )
lsmspsn.f  |-  F  =  (Scalar `  W )
lsmspsn.k  |-  K  =  ( Base `  F
)
lsmspsn.t  |-  .x.  =  ( .s `  W )
lsmspsn.p  |-  .(+)  =  (
LSSum `  W )
lsmspsn.n  |-  N  =  ( LSpan `  W )
lsmspsn.w  |-  ( ph  ->  W  e.  LMod )
lsmspsn.x  |-  ( ph  ->  X  e.  V )
lsmspsn.y  |-  ( ph  ->  Y  e.  V )
Assertion
Ref Expression
lsmspsn  |-  ( ph  ->  ( U  e.  ( ( N `  { X } )  .(+)  ( N `
 { Y }
) )  <->  E. j  e.  K  E. k  e.  K  U  =  ( ( j  .x.  X )  .+  (
k  .x.  Y )
) ) )
Distinct variable groups:    j, k,  .+    j, F, k    j, K, k    j, N, k    .x. , j, k    U, j, k    j, V, k   
j, W, k    j, X, k    j, Y, k    ph, j, k
Allowed substitution hints:    .(+) ( j, k)

Proof of Theorem lsmspsn
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmspsn.w . . . 4  |-  ( ph  ->  W  e.  LMod )
2 lsmspsn.x . . . 4  |-  ( ph  ->  X  e.  V )
3 lsmspsn.v . . . . 5  |-  V  =  ( Base `  W
)
4 lsmspsn.n . . . . 5  |-  N  =  ( LSpan `  W )
53, 4lspsnsubg 18146 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  e.  (SubGrp `  W ) )
61, 2, 5syl2anc 665 . . 3  |-  ( ph  ->  ( N `  { X } )  e.  (SubGrp `  W ) )
7 lsmspsn.y . . . 4  |-  ( ph  ->  Y  e.  V )
83, 4lspsnsubg 18146 . . . 4  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  ( N `  { Y } )  e.  (SubGrp `  W ) )
91, 7, 8syl2anc 665 . . 3  |-  ( ph  ->  ( N `  { Y } )  e.  (SubGrp `  W ) )
10 lsmspsn.a . . . 4  |-  .+  =  ( +g  `  W )
11 lsmspsn.p . . . 4  |-  .(+)  =  (
LSSum `  W )
1210, 11lsmelval 17244 . . 3  |-  ( ( ( N `  { X } )  e.  (SubGrp `  W )  /\  ( N `  { Y } )  e.  (SubGrp `  W ) )  -> 
( U  e.  ( ( N `  { X } )  .(+)  ( N `
 { Y }
) )  <->  E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) U  =  ( v  .+  w
) ) )
136, 9, 12syl2anc 665 . 2  |-  ( ph  ->  ( U  e.  ( ( N `  { X } )  .(+)  ( N `
 { Y }
) )  <->  E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) U  =  ( v  .+  w
) ) )
14 lsmspsn.f . . . . . . . . . 10  |-  F  =  (Scalar `  W )
15 lsmspsn.k . . . . . . . . . 10  |-  K  =  ( Base `  F
)
16 lsmspsn.t . . . . . . . . . 10  |-  .x.  =  ( .s `  W )
1714, 15, 3, 16, 4lspsnel 18169 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
v  e.  ( N `
 { X }
)  <->  E. j  e.  K  v  =  ( j  .x.  X ) ) )
181, 2, 17syl2anc 665 . . . . . . . 8  |-  ( ph  ->  ( v  e.  ( N `  { X } )  <->  E. j  e.  K  v  =  ( j  .x.  X
) ) )
1914, 15, 3, 16, 4lspsnel 18169 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  (
w  e.  ( N `
 { Y }
)  <->  E. k  e.  K  w  =  ( k  .x.  Y ) ) )
201, 7, 19syl2anc 665 . . . . . . . 8  |-  ( ph  ->  ( w  e.  ( N `  { Y } )  <->  E. k  e.  K  w  =  ( k  .x.  Y
) ) )
2118, 20anbi12d 715 . . . . . . 7  |-  ( ph  ->  ( ( v  e.  ( N `  { X } )  /\  w  e.  ( N `  { Y } ) )  <->  ( E. j  e.  K  v  =  ( j  .x.  X )  /\  E. k  e.  K  w  =  ( k  .x.  Y ) ) ) )
2221biimpa 486 . . . . . 6  |-  ( (
ph  /\  ( v  e.  ( N `  { X } )  /\  w  e.  ( N `  { Y } ) ) )  ->  ( E. j  e.  K  v  =  ( j  .x.  X
)  /\  E. k  e.  K  w  =  ( k  .x.  Y
) ) )
2322biantrurd 510 . . . . 5  |-  ( (
ph  /\  ( v  e.  ( N `  { X } )  /\  w  e.  ( N `  { Y } ) ) )  ->  ( U  =  ( v  .+  w
)  <->  ( ( E. j  e.  K  v  =  ( j  .x.  X )  /\  E. k  e.  K  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) ) ) )
24 r19.41v 2919 . . . . . . 7  |-  ( E. k  e.  K  ( ( v  =  ( j  .x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w
) )  <->  ( E. k  e.  K  (
v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) ) )
2524rexbii 2866 . . . . . 6  |-  ( E. j  e.  K  E. k  e.  K  (
( v  =  ( j  .x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w
) )  <->  E. j  e.  K  ( E. k  e.  K  (
v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) ) )
26 r19.41v 2919 . . . . . 6  |-  ( E. j  e.  K  ( E. k  e.  K  ( v  =  ( j  .x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w
) )  <->  ( E. j  e.  K  E. k  e.  K  (
v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) ) )
27 reeanv 2935 . . . . . . 7  |-  ( E. j  e.  K  E. k  e.  K  (
v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  <->  ( E. j  e.  K  v  =  ( j  .x.  X )  /\  E. k  e.  K  w  =  ( k  .x.  Y ) ) )
2827anbi1i 699 . . . . . 6  |-  ( ( E. j  e.  K  E. k  e.  K  ( v  =  ( j  .x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w
) )  <->  ( ( E. j  e.  K  v  =  ( j  .x.  X )  /\  E. k  e.  K  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) ) )
2925, 26, 283bitrri 275 . . . . 5  |-  ( ( ( E. j  e.  K  v  =  ( j  .x.  X )  /\  E. k  e.  K  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w
) )  <->  E. j  e.  K  E. k  e.  K  ( (
v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) ) )
3023, 29syl6bb 264 . . . 4  |-  ( (
ph  /\  ( v  e.  ( N `  { X } )  /\  w  e.  ( N `  { Y } ) ) )  ->  ( U  =  ( v  .+  w
)  <->  E. j  e.  K  E. k  e.  K  ( ( v  =  ( j  .x.  X
)  /\  w  =  ( k  .x.  Y
) )  /\  U  =  ( v  .+  w ) ) ) )
31302rexbidva 2884 . . 3  |-  ( ph  ->  ( E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) U  =  ( v  .+  w
)  <->  E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) E. j  e.  K  E. k  e.  K  ( (
v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) ) ) )
32 rexrot4 2931 . . 3  |-  ( E. v  e.  ( N `
 { X }
) E. w  e.  ( N `  { Y } ) E. j  e.  K  E. k  e.  K  ( (
v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) )  <->  E. j  e.  K  E. k  e.  K  E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) ( ( v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) ) )
3331, 32syl6bb 264 . 2  |-  ( ph  ->  ( E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) U  =  ( v  .+  w
)  <->  E. j  e.  K  E. k  e.  K  E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) ( ( v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) ) ) )
341adantr 466 . . . . 5  |-  ( (
ph  /\  ( j  e.  K  /\  k  e.  K ) )  ->  W  e.  LMod )
35 simprl 762 . . . . 5  |-  ( (
ph  /\  ( j  e.  K  /\  k  e.  K ) )  -> 
j  e.  K )
362adantr 466 . . . . 5  |-  ( (
ph  /\  ( j  e.  K  /\  k  e.  K ) )  ->  X  e.  V )
373, 16, 14, 15, 4, 34, 35, 36lspsneli 18167 . . . 4  |-  ( (
ph  /\  ( j  e.  K  /\  k  e.  K ) )  -> 
( j  .x.  X
)  e.  ( N `
 { X }
) )
38 simprr 764 . . . . 5  |-  ( (
ph  /\  ( j  e.  K  /\  k  e.  K ) )  -> 
k  e.  K )
397adantr 466 . . . . 5  |-  ( (
ph  /\  ( j  e.  K  /\  k  e.  K ) )  ->  Y  e.  V )
403, 16, 14, 15, 4, 34, 38, 39lspsneli 18167 . . . 4  |-  ( (
ph  /\  ( j  e.  K  /\  k  e.  K ) )  -> 
( k  .x.  Y
)  e.  ( N `
 { Y }
) )
41 oveq1 6256 . . . . . 6  |-  ( v  =  ( j  .x.  X )  ->  (
v  .+  w )  =  ( ( j 
.x.  X )  .+  w ) )
4241eqeq2d 2438 . . . . 5  |-  ( v  =  ( j  .x.  X )  ->  ( U  =  ( v  .+  w )  <->  U  =  ( ( j  .x.  X )  .+  w
) ) )
43 oveq2 6257 . . . . . 6  |-  ( w  =  ( k  .x.  Y )  ->  (
( j  .x.  X
)  .+  w )  =  ( ( j 
.x.  X )  .+  ( k  .x.  Y
) ) )
4443eqeq2d 2438 . . . . 5  |-  ( w  =  ( k  .x.  Y )  ->  ( U  =  ( (
j  .x.  X )  .+  w )  <->  U  =  ( ( j  .x.  X )  .+  (
k  .x.  Y )
) ) )
4542, 44ceqsrex2v 3149 . . . 4  |-  ( ( ( j  .x.  X
)  e.  ( N `
 { X }
)  /\  ( k  .x.  Y )  e.  ( N `  { Y } ) )  -> 
( E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) ( ( v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) )  <->  U  =  ( ( j  .x.  X )  .+  (
k  .x.  Y )
) ) )
4637, 40, 45syl2anc 665 . . 3  |-  ( (
ph  /\  ( j  e.  K  /\  k  e.  K ) )  -> 
( E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) ( ( v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) )  <->  U  =  ( ( j  .x.  X )  .+  (
k  .x.  Y )
) ) )
47462rexbidva 2884 . 2  |-  ( ph  ->  ( E. j  e.  K  E. k  e.  K  E. v  e.  ( N `  { X } ) E. w  e.  ( N `  { Y } ) ( ( v  =  ( j 
.x.  X )  /\  w  =  ( k  .x.  Y ) )  /\  U  =  ( v  .+  w ) )  <->  E. j  e.  K  E. k  e.  K  U  =  ( ( j  .x.  X )  .+  (
k  .x.  Y )
) ) )
4813, 33, 473bitrd 282 1  |-  ( ph  ->  ( U  e.  ( ( N `  { X } )  .(+)  ( N `
 { Y }
) )  <->  E. j  e.  K  E. k  e.  K  U  =  ( ( j  .x.  X )  .+  (
k  .x.  Y )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1872   E.wrex 2715   {csn 3941   ` cfv 5544  (class class class)co 6249   Basecbs 15064   +g cplusg 15133  Scalarcsca 15136   .scvsca 15137  SubGrpcsubg 16754   LSSumclsm 17229   LModclmod 18034   LSpanclspn 18137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-rep 4479  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-int 4199  df-iun 4244  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-om 6651  df-1st 6751  df-2nd 6752  df-wrecs 6983  df-recs 7045  df-rdg 7083  df-er 7318  df-en 7525  df-dom 7526  df-sdom 7527  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9813  df-neg 9814  df-nn 10561  df-2 10619  df-ndx 15067  df-slot 15068  df-base 15069  df-sets 15070  df-ress 15071  df-plusg 15146  df-0g 15283  df-mgm 16431  df-sgrp 16470  df-mnd 16480  df-grp 16616  df-minusg 16617  df-sbg 16618  df-subg 16757  df-lsm 17231  df-mgp 17667  df-ur 17679  df-ring 17725  df-lmod 18036  df-lss 18099  df-lsp 18138
This theorem is referenced by:  lsppr  18259  baerlem3lem2  35190  baerlem5alem2  35191  baerlem5blem2  35192
  Copyright terms: Public domain W3C validator