Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmsatcv Structured version   Unicode version

Theorem lsmsatcv 32667
Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Similar to Exercise 5 of [Kalmbach] p. 153. (spansncvi 25067 analog.) Explicit atom version of lsmcv 17234. (Contributed by NM, 29-Oct-2014.)
Hypotheses
Ref Expression
lsmsatcv.s  |-  S  =  ( LSubSp `  W )
lsmsatcv.p  |-  .(+)  =  (
LSSum `  W )
lsmsatcv.a  |-  A  =  (LSAtoms `  W )
lsmsatcv.w  |-  ( ph  ->  W  e.  LVec )
lsmsatcv.t  |-  ( ph  ->  T  e.  S )
lsmsatcv.u  |-  ( ph  ->  U  e.  S )
lsmsatcv.x  |-  ( ph  ->  Q  e.  A )
Assertion
Ref Expression
lsmsatcv  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T 
.(+)  Q ) )  ->  U  =  ( T  .(+) 
Q ) )

Proof of Theorem lsmsatcv
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 lsmsatcv.w . . . 4  |-  ( ph  ->  W  e.  LVec )
2 lsmsatcv.x . . . 4  |-  ( ph  ->  Q  e.  A )
3 eqid 2443 . . . . 5  |-  ( Base `  W )  =  (
Base `  W )
4 eqid 2443 . . . . 5  |-  ( LSpan `  W )  =  (
LSpan `  W )
5 lsmsatcv.a . . . . 5  |-  A  =  (LSAtoms `  W )
63, 4, 5islsati 32651 . . . 4  |-  ( ( W  e.  LVec  /\  Q  e.  A )  ->  E. v  e.  ( Base `  W
) Q  =  ( ( LSpan `  W ) `  { v } ) )
71, 2, 6syl2anc 661 . . 3  |-  ( ph  ->  E. v  e.  (
Base `  W ) Q  =  ( ( LSpan `  W ) `  { v } ) )
8 lsmsatcv.s . . . . . . . 8  |-  S  =  ( LSubSp `  W )
9 lsmsatcv.p . . . . . . . 8  |-  .(+)  =  (
LSSum `  W )
101adantr 465 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( Base `  W )
)  ->  W  e.  LVec )
11 lsmsatcv.t . . . . . . . . 9  |-  ( ph  ->  T  e.  S )
1211adantr 465 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( Base `  W )
)  ->  T  e.  S )
13 lsmsatcv.u . . . . . . . . 9  |-  ( ph  ->  U  e.  S )
1413adantr 465 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( Base `  W )
)  ->  U  e.  S )
15 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( Base `  W )
)  ->  v  e.  ( Base `  W )
)
163, 8, 4, 9, 10, 12, 14, 15lsmcv 17234 . . . . . . 7  |-  ( ( ( ph  /\  v  e.  ( Base `  W
) )  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( (
LSpan `  W ) `  { v } ) ) )  ->  U  =  ( T  .(+)  ( ( LSpan `  W ) `  { v } ) ) )
17163expib 1190 . . . . . 6  |-  ( (
ph  /\  v  e.  ( Base `  W )
)  ->  ( ( T  C.  U  /\  U  C_  ( T  .(+)  ( (
LSpan `  W ) `  { v } ) ) )  ->  U  =  ( T  .(+)  ( ( LSpan `  W ) `  { v } ) ) ) )
18173adant3 1008 . . . . 5  |-  ( (
ph  /\  v  e.  ( Base `  W )  /\  Q  =  (
( LSpan `  W ) `  { v } ) )  ->  ( ( T  C.  U  /\  U  C_  ( T  .(+)  ( (
LSpan `  W ) `  { v } ) ) )  ->  U  =  ( T  .(+)  ( ( LSpan `  W ) `  { v } ) ) ) )
19 oveq2 6111 . . . . . . . . 9  |-  ( Q  =  ( ( LSpan `  W ) `  {
v } )  -> 
( T  .(+)  Q )  =  ( T  .(+)  ( ( LSpan `  W ) `  { v } ) ) )
2019sseq2d 3396 . . . . . . . 8  |-  ( Q  =  ( ( LSpan `  W ) `  {
v } )  -> 
( U  C_  ( T  .(+)  Q )  <->  U  C_  ( T  .(+)  ( ( LSpan `  W ) `  {
v } ) ) ) )
2120anbi2d 703 . . . . . . 7  |-  ( Q  =  ( ( LSpan `  W ) `  {
v } )  -> 
( ( T  C.  U  /\  U  C_  ( T  .(+)  Q ) )  <-> 
( T  C.  U  /\  U  C_  ( T 
.(+)  ( ( LSpan `  W ) `  {
v } ) ) ) ) )
2219eqeq2d 2454 . . . . . . 7  |-  ( Q  =  ( ( LSpan `  W ) `  {
v } )  -> 
( U  =  ( T  .(+)  Q )  <->  U  =  ( T  .(+)  ( ( LSpan `  W ) `  { v } ) ) ) )
2321, 22imbi12d 320 . . . . . 6  |-  ( Q  =  ( ( LSpan `  W ) `  {
v } )  -> 
( ( ( T 
C.  U  /\  U  C_  ( T  .(+)  Q ) )  ->  U  =  ( T  .(+)  Q ) )  <->  ( ( T 
C.  U  /\  U  C_  ( T  .(+)  ( (
LSpan `  W ) `  { v } ) ) )  ->  U  =  ( T  .(+)  ( ( LSpan `  W ) `  { v } ) ) ) ) )
24233ad2ant3 1011 . . . . 5  |-  ( (
ph  /\  v  e.  ( Base `  W )  /\  Q  =  (
( LSpan `  W ) `  { v } ) )  ->  ( (
( T  C.  U  /\  U  C_  ( T 
.(+)  Q ) )  ->  U  =  ( T  .(+) 
Q ) )  <->  ( ( T  C.  U  /\  U  C_  ( T  .(+)  ( (
LSpan `  W ) `  { v } ) ) )  ->  U  =  ( T  .(+)  ( ( LSpan `  W ) `  { v } ) ) ) ) )
2518, 24mpbird 232 . . . 4  |-  ( (
ph  /\  v  e.  ( Base `  W )  /\  Q  =  (
( LSpan `  W ) `  { v } ) )  ->  ( ( T  C.  U  /\  U  C_  ( T  .(+)  Q ) )  ->  U  =  ( T  .(+)  Q ) ) )
2625rexlimdv3a 2855 . . 3  |-  ( ph  ->  ( E. v  e.  ( Base `  W
) Q  =  ( ( LSpan `  W ) `  { v } )  ->  ( ( T 
C.  U  /\  U  C_  ( T  .(+)  Q ) )  ->  U  =  ( T  .(+)  Q ) ) ) )
277, 26mpd 15 . 2  |-  ( ph  ->  ( ( T  C.  U  /\  U  C_  ( T  .(+)  Q ) )  ->  U  =  ( T  .(+)  Q )
) )
28273impib 1185 1  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T 
.(+)  Q ) )  ->  U  =  ( T  .(+) 
Q ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   E.wrex 2728    C_ wss 3340    C. wpss 3341   {csn 3889   ` cfv 5430  (class class class)co 6103   Basecbs 14186   LSSumclsm 16145   LSubSpclss 17025   LSpanclspn 17064   LVecclvec 17195  LSAtomsclsa 32631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-1st 6589  df-2nd 6590  df-tpos 6757  df-recs 6844  df-rdg 6878  df-er 7113  df-en 7323  df-dom 7324  df-sdom 7325  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-nn 10335  df-2 10392  df-3 10393  df-ndx 14189  df-slot 14190  df-base 14191  df-sets 14192  df-ress 14193  df-plusg 14263  df-mulr 14264  df-0g 14392  df-mnd 15427  df-submnd 15477  df-grp 15557  df-minusg 15558  df-sbg 15559  df-subg 15690  df-lsm 16147  df-cmn 16291  df-abl 16292  df-mgp 16604  df-ur 16616  df-rng 16659  df-oppr 16727  df-dvdsr 16745  df-unit 16746  df-invr 16776  df-drng 16846  df-lmod 16962  df-lss 17026  df-lsp 17065  df-lvec 17196  df-lsatoms 32633
This theorem is referenced by:  dochsat  35040
  Copyright terms: Public domain W3C validator