MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmelval2 Structured version   Unicode version

Theorem lsmelval2 17926
Description: Subspace sum membership in terms of a sum of 1-dim subspaces (atoms), which can be useful for treating subspaces as projective lattice elements. (Contributed by NM, 9-Aug-2014.)
Hypotheses
Ref Expression
lsmelval2.v  |-  V  =  ( Base `  W
)
lsmelval2.s  |-  S  =  ( LSubSp `  W )
lsmelval2.p  |-  .(+)  =  (
LSSum `  W )
lsmelval2.n  |-  N  =  ( LSpan `  W )
lsmelval2.w  |-  ( ph  ->  W  e.  LMod )
lsmelval2.t  |-  ( ph  ->  T  e.  S )
lsmelval2.u  |-  ( ph  ->  U  e.  S )
Assertion
Ref Expression
lsmelval2  |-  ( ph  ->  ( X  e.  ( T  .(+)  U )  <->  ( X  e.  V  /\  E. y  e.  T  E. z  e.  U  ( N `  { X } )  C_  (
( N `  {
y } )  .(+)  ( N `  { z } ) ) ) ) )
Distinct variable groups:    y, z,  .(+)    y, T, z    y, U, z    y, V, z   
y, W, z    y, X, z    ph, y, z
Allowed substitution hints:    S( y, z)    N( y, z)

Proof of Theorem lsmelval2
StepHypRef Expression
1 lsmelval2.w . . . . . 6  |-  ( ph  ->  W  e.  LMod )
2 lsmelval2.t . . . . . 6  |-  ( ph  ->  T  e.  S )
3 lsmelval2.s . . . . . . 7  |-  S  =  ( LSubSp `  W )
43lsssubg 17798 . . . . . 6  |-  ( ( W  e.  LMod  /\  T  e.  S )  ->  T  e.  (SubGrp `  W )
)
51, 2, 4syl2anc 659 . . . . 5  |-  ( ph  ->  T  e.  (SubGrp `  W ) )
6 lsmelval2.u . . . . . 6  |-  ( ph  ->  U  e.  S )
73lsssubg 17798 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  e.  (SubGrp `  W )
)
81, 6, 7syl2anc 659 . . . . 5  |-  ( ph  ->  U  e.  (SubGrp `  W ) )
9 eqid 2454 . . . . . 6  |-  ( +g  `  W )  =  ( +g  `  W )
10 lsmelval2.p . . . . . 6  |-  .(+)  =  (
LSSum `  W )
119, 10lsmelval 16868 . . . . 5  |-  ( ( T  e.  (SubGrp `  W )  /\  U  e.  (SubGrp `  W )
)  ->  ( X  e.  ( T  .(+)  U )  <->  E. y  e.  T  E. z  e.  U  X  =  ( y
( +g  `  W ) z ) ) )
125, 8, 11syl2anc 659 . . . 4  |-  ( ph  ->  ( X  e.  ( T  .(+)  U )  <->  E. y  e.  T  E. z  e.  U  X  =  ( y ( +g  `  W ) z ) ) )
131adantr 463 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  T  /\  z  e.  U ) )  ->  W  e.  LMod )
142adantr 463 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  T  /\  z  e.  U ) )  ->  T  e.  S )
15 simprl 754 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  T  /\  z  e.  U ) )  -> 
y  e.  T )
16 lsmelval2.v . . . . . . . . . . . . . 14  |-  V  =  ( Base `  W
)
1716, 3lssel 17779 . . . . . . . . . . . . 13  |-  ( ( T  e.  S  /\  y  e.  T )  ->  y  e.  V )
1814, 15, 17syl2anc 659 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  T  /\  z  e.  U ) )  -> 
y  e.  V )
19 lsmelval2.n . . . . . . . . . . . . 13  |-  N  =  ( LSpan `  W )
2016, 3, 19lspsncl 17818 . . . . . . . . . . . 12  |-  ( ( W  e.  LMod  /\  y  e.  V )  ->  ( N `  { y } )  e.  S
)
2113, 18, 20syl2anc 659 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  T  /\  z  e.  U ) )  -> 
( N `  {
y } )  e.  S )
223lsssubg 17798 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  ( N `  { y } )  e.  S
)  ->  ( N `  { y } )  e.  (SubGrp `  W
) )
2313, 21, 22syl2anc 659 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  T  /\  z  e.  U ) )  -> 
( N `  {
y } )  e.  (SubGrp `  W )
)
246adantr 463 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  T  /\  z  e.  U ) )  ->  U  e.  S )
25 simprr 755 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  T  /\  z  e.  U ) )  -> 
z  e.  U )
2616, 3lssel 17779 . . . . . . . . . . . . 13  |-  ( ( U  e.  S  /\  z  e.  U )  ->  z  e.  V )
2724, 25, 26syl2anc 659 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  T  /\  z  e.  U ) )  -> 
z  e.  V )
2816, 3, 19lspsncl 17818 . . . . . . . . . . . 12  |-  ( ( W  e.  LMod  /\  z  e.  V )  ->  ( N `  { z } )  e.  S
)
2913, 27, 28syl2anc 659 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  T  /\  z  e.  U ) )  -> 
( N `  {
z } )  e.  S )
303lsssubg 17798 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  ( N `  { z } )  e.  S
)  ->  ( N `  { z } )  e.  (SubGrp `  W
) )
3113, 29, 30syl2anc 659 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  T  /\  z  e.  U ) )  -> 
( N `  {
z } )  e.  (SubGrp `  W )
)
3216, 19lspsnid 17834 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  y  e.  V )  ->  y  e.  ( N `  {
y } ) )
3313, 18, 32syl2anc 659 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  T  /\  z  e.  U ) )  -> 
y  e.  ( N `
 { y } ) )
3416, 19lspsnid 17834 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  z  e.  V )  ->  z  e.  ( N `  {
z } ) )
3513, 27, 34syl2anc 659 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  T  /\  z  e.  U ) )  -> 
z  e.  ( N `
 { z } ) )
369, 10lsmelvali 16869 . . . . . . . . . 10  |-  ( ( ( ( N `  { y } )  e.  (SubGrp `  W
)  /\  ( N `  { z } )  e.  (SubGrp `  W
) )  /\  (
y  e.  ( N `
 { y } )  /\  z  e.  ( N `  {
z } ) ) )  ->  ( y
( +g  `  W ) z )  e.  ( ( N `  {
y } )  .(+)  ( N `  { z } ) ) )
3723, 31, 33, 35, 36syl22anc 1227 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  T  /\  z  e.  U ) )  -> 
( y ( +g  `  W ) z )  e.  ( ( N `
 { y } )  .(+)  ( N `  { z } ) ) )
38 eleq1a 2537 . . . . . . . . 9  |-  ( ( y ( +g  `  W
) z )  e.  ( ( N `  { y } ) 
.(+)  ( N `  { z } ) )  ->  ( X  =  ( y ( +g  `  W ) z )  ->  X  e.  ( ( N `  { y } ) 
.(+)  ( N `  { z } ) ) ) )
3937, 38syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  T  /\  z  e.  U ) )  -> 
( X  =  ( y ( +g  `  W
) z )  ->  X  e.  ( ( N `  { y } )  .(+)  ( N `
 { z } ) ) ) )
403, 10lsmcl 17924 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  ( N `  { y } )  e.  S  /\  ( N `  {
z } )  e.  S )  ->  (
( N `  {
y } )  .(+)  ( N `  { z } ) )  e.  S )
4113, 21, 29, 40syl3anc 1226 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  T  /\  z  e.  U ) )  -> 
( ( N `  { y } ) 
.(+)  ( N `  { z } ) )  e.  S )
4216, 3, 19, 13, 41lspsnel6 17835 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  T  /\  z  e.  U ) )  -> 
( X  e.  ( ( N `  {
y } )  .(+)  ( N `  { z } ) )  <->  ( X  e.  V  /\  ( N `  { X } )  C_  (
( N `  {
y } )  .(+)  ( N `  { z } ) ) ) ) )
4339, 42sylibd 214 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  T  /\  z  e.  U ) )  -> 
( X  =  ( y ( +g  `  W
) z )  -> 
( X  e.  V  /\  ( N `  { X } )  C_  (
( N `  {
y } )  .(+)  ( N `  { z } ) ) ) ) )
4443anassrs 646 . . . . . 6  |-  ( ( ( ph  /\  y  e.  T )  /\  z  e.  U )  ->  ( X  =  ( y
( +g  `  W ) z )  ->  ( X  e.  V  /\  ( N `  { X } )  C_  (
( N `  {
y } )  .(+)  ( N `  { z } ) ) ) ) )
4544reximdva 2929 . . . . 5  |-  ( (
ph  /\  y  e.  T )  ->  ( E. z  e.  U  X  =  ( y
( +g  `  W ) z )  ->  E. z  e.  U  ( X  e.  V  /\  ( N `  { X } )  C_  (
( N `  {
y } )  .(+)  ( N `  { z } ) ) ) ) )
4645reximdva 2929 . . . 4  |-  ( ph  ->  ( E. y  e.  T  E. z  e.  U  X  =  ( y ( +g  `  W
) z )  ->  E. y  e.  T  E. z  e.  U  ( X  e.  V  /\  ( N `  { X } )  C_  (
( N `  {
y } )  .(+)  ( N `  { z } ) ) ) ) )
4712, 46sylbid 215 . . 3  |-  ( ph  ->  ( X  e.  ( T  .(+)  U )  ->  E. y  e.  T  E. z  e.  U  ( X  e.  V  /\  ( N `  { X } )  C_  (
( N `  {
y } )  .(+)  ( N `  { z } ) ) ) ) )
485adantr 463 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  T  /\  z  e.  U ) )  ->  T  e.  (SubGrp `  W
) )
493, 19, 13, 14, 15lspsnel5a 17837 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  T  /\  z  e.  U ) )  -> 
( N `  {
y } )  C_  T )
5010lsmless1 16878 . . . . . . . 8  |-  ( ( T  e.  (SubGrp `  W )  /\  ( N `  { z } )  e.  (SubGrp `  W )  /\  ( N `  { y } )  C_  T
)  ->  ( ( N `  { y } )  .(+)  ( N `
 { z } ) )  C_  ( T  .(+)  ( N `  { z } ) ) )
5148, 31, 49, 50syl3anc 1226 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  T  /\  z  e.  U ) )  -> 
( ( N `  { y } ) 
.(+)  ( N `  { z } ) )  C_  ( T  .(+) 
( N `  {
z } ) ) )
528adantr 463 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  T  /\  z  e.  U ) )  ->  U  e.  (SubGrp `  W
) )
533, 19, 13, 24, 25lspsnel5a 17837 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  T  /\  z  e.  U ) )  -> 
( N `  {
z } )  C_  U )
5410lsmless2 16879 . . . . . . . 8  |-  ( ( T  e.  (SubGrp `  W )  /\  U  e.  (SubGrp `  W )  /\  ( N `  {
z } )  C_  U )  ->  ( T  .(+)  ( N `  { z } ) )  C_  ( T  .(+) 
U ) )
5548, 52, 53, 54syl3anc 1226 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  T  /\  z  e.  U ) )  -> 
( T  .(+)  ( N `
 { z } ) )  C_  ( T  .(+)  U ) )
5651, 55sstrd 3499 . . . . . 6  |-  ( (
ph  /\  ( y  e.  T  /\  z  e.  U ) )  -> 
( ( N `  { y } ) 
.(+)  ( N `  { z } ) )  C_  ( T  .(+) 
U ) )
5756sseld 3488 . . . . 5  |-  ( (
ph  /\  ( y  e.  T  /\  z  e.  U ) )  -> 
( X  e.  ( ( N `  {
y } )  .(+)  ( N `  { z } ) )  ->  X  e.  ( T  .(+) 
U ) ) )
5842, 57sylbird 235 . . . 4  |-  ( (
ph  /\  ( y  e.  T  /\  z  e.  U ) )  -> 
( ( X  e.  V  /\  ( N `
 { X }
)  C_  ( ( N `  { y } )  .(+)  ( N `
 { z } ) ) )  ->  X  e.  ( T  .(+) 
U ) ) )
5958rexlimdvva 2953 . . 3  |-  ( ph  ->  ( E. y  e.  T  E. z  e.  U  ( X  e.  V  /\  ( N `
 { X }
)  C_  ( ( N `  { y } )  .(+)  ( N `
 { z } ) ) )  ->  X  e.  ( T  .(+) 
U ) ) )
6047, 59impbid 191 . 2  |-  ( ph  ->  ( X  e.  ( T  .(+)  U )  <->  E. y  e.  T  E. z  e.  U  ( X  e.  V  /\  ( N `  { X } )  C_  (
( N `  {
y } )  .(+)  ( N `  { z } ) ) ) ) )
61 r19.42v 3009 . . . 4  |-  ( E. z  e.  U  ( X  e.  V  /\  ( N `  { X } )  C_  (
( N `  {
y } )  .(+)  ( N `  { z } ) ) )  <-> 
( X  e.  V  /\  E. z  e.  U  ( N `  { X } )  C_  (
( N `  {
y } )  .(+)  ( N `  { z } ) ) ) )
6261rexbii 2956 . . 3  |-  ( E. y  e.  T  E. z  e.  U  ( X  e.  V  /\  ( N `  { X } )  C_  (
( N `  {
y } )  .(+)  ( N `  { z } ) ) )  <->  E. y  e.  T  ( X  e.  V  /\  E. z  e.  U  ( N `  { X } )  C_  (
( N `  {
y } )  .(+)  ( N `  { z } ) ) ) )
63 r19.42v 3009 . . 3  |-  ( E. y  e.  T  ( X  e.  V  /\  E. z  e.  U  ( N `  { X } )  C_  (
( N `  {
y } )  .(+)  ( N `  { z } ) ) )  <-> 
( X  e.  V  /\  E. y  e.  T  E. z  e.  U  ( N `  { X } )  C_  (
( N `  {
y } )  .(+)  ( N `  { z } ) ) ) )
6462, 63bitri 249 . 2  |-  ( E. y  e.  T  E. z  e.  U  ( X  e.  V  /\  ( N `  { X } )  C_  (
( N `  {
y } )  .(+)  ( N `  { z } ) ) )  <-> 
( X  e.  V  /\  E. y  e.  T  E. z  e.  U  ( N `  { X } )  C_  (
( N `  {
y } )  .(+)  ( N `  { z } ) ) ) )
6560, 64syl6bb 261 1  |-  ( ph  ->  ( X  e.  ( T  .(+)  U )  <->  ( X  e.  V  /\  E. y  e.  T  E. z  e.  U  ( N `  { X } )  C_  (
( N `  {
y } )  .(+)  ( N `  { z } ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   E.wrex 2805    C_ wss 3461   {csn 4016   ` cfv 5570  (class class class)co 6270   Basecbs 14716   +g cplusg 14784  SubGrpcsubg 16394   LSSumclsm 16853   LModclmod 17707   LSubSpclss 17773   LSpanclspn 17812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-0g 14931  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-submnd 16166  df-grp 16256  df-minusg 16257  df-sbg 16258  df-subg 16397  df-cntz 16554  df-lsm 16855  df-cmn 16999  df-abl 17000  df-mgp 17337  df-ur 17349  df-ring 17395  df-lmod 17709  df-lss 17774  df-lsp 17813
This theorem is referenced by:  dihjat1lem  37552
  Copyright terms: Public domain W3C validator