MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmcv Structured version   Unicode version

Theorem lsmcv 18357
Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Similar to Exercise 5 of [Kalmbach] p. 153. (spansncvi 27297 analog.) TODO: ugly proof; can it be shortened? (Contributed by NM, 2-Oct-2014.)
Hypotheses
Ref Expression
lsmcv.v  |-  V  =  ( Base `  W
)
lsmcv.s  |-  S  =  ( LSubSp `  W )
lsmcv.n  |-  N  =  ( LSpan `  W )
lsmcv.p  |-  .(+)  =  (
LSSum `  W )
lsmcv.w  |-  ( ph  ->  W  e.  LVec )
lsmcv.t  |-  ( ph  ->  T  e.  S )
lsmcv.u  |-  ( ph  ->  U  e.  S )
lsmcv.x  |-  ( ph  ->  X  e.  V )
Assertion
Ref Expression
lsmcv  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T 
.(+)  ( N `  { X } ) ) )  ->  U  =  ( T  .(+)  ( N `
 { X }
) ) )

Proof of Theorem lsmcv
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1008 . 2  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T 
.(+)  ( N `  { X } ) ) )  ->  U  C_  ( T  .(+)  ( N `  { X } ) ) )
2 simp2 1007 . . . 4  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T 
.(+)  ( N `  { X } ) ) )  ->  T  C.  U
)
3 pssss 3561 . . . 4  |-  ( T 
C.  U  ->  T  C_  U )
42, 3syl 17 . . 3  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T 
.(+)  ( N `  { X } ) ) )  ->  T  C_  U
)
5 pssnel 3861 . . . . 5  |-  ( T 
C.  U  ->  E. x
( x  e.  U  /\  -.  x  e.  T
) )
62, 5syl 17 . . . 4  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T 
.(+)  ( N `  { X } ) ) )  ->  E. x
( x  e.  U  /\  -.  x  e.  T
) )
7 simpl3 1011 . . . . . . 7  |-  ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  ->  U  C_  ( T  .(+)  ( N `
 { X }
) ) )
8 simprl 763 . . . . . . 7  |-  ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  ->  x  e.  U )
97, 8sseldd 3466 . . . . . 6  |-  ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  ->  x  e.  ( T  .(+)  ( N `
 { X }
) ) )
10 lsmcv.w . . . . . . . . . . . 12  |-  ( ph  ->  W  e.  LVec )
11 lveclmod 18322 . . . . . . . . . . . 12  |-  ( W  e.  LVec  ->  W  e. 
LMod )
1210, 11syl 17 . . . . . . . . . . 11  |-  ( ph  ->  W  e.  LMod )
13 lsmcv.s . . . . . . . . . . . 12  |-  S  =  ( LSubSp `  W )
1413lsssssubg 18174 . . . . . . . . . . 11  |-  ( W  e.  LMod  ->  S  C_  (SubGrp `  W ) )
1512, 14syl 17 . . . . . . . . . 10  |-  ( ph  ->  S  C_  (SubGrp `  W
) )
16 lsmcv.t . . . . . . . . . 10  |-  ( ph  ->  T  e.  S )
1715, 16sseldd 3466 . . . . . . . . 9  |-  ( ph  ->  T  e.  (SubGrp `  W ) )
18 lsmcv.x . . . . . . . . . . 11  |-  ( ph  ->  X  e.  V )
19 lsmcv.v . . . . . . . . . . . 12  |-  V  =  ( Base `  W
)
20 lsmcv.n . . . . . . . . . . . 12  |-  N  =  ( LSpan `  W )
2119, 13, 20lspsncl 18193 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  e.  S
)
2212, 18, 21syl2anc 666 . . . . . . . . . 10  |-  ( ph  ->  ( N `  { X } )  e.  S
)
2315, 22sseldd 3466 . . . . . . . . 9  |-  ( ph  ->  ( N `  { X } )  e.  (SubGrp `  W ) )
24 eqid 2423 . . . . . . . . . 10  |-  ( +g  `  W )  =  ( +g  `  W )
25 lsmcv.p . . . . . . . . . 10  |-  .(+)  =  (
LSSum `  W )
2624, 25lsmelval 17294 . . . . . . . . 9  |-  ( ( T  e.  (SubGrp `  W )  /\  ( N `  { X } )  e.  (SubGrp `  W ) )  -> 
( x  e.  ( T  .(+)  ( N `  { X } ) )  <->  E. y  e.  T  E. z  e.  ( N `  { X } ) x  =  ( y ( +g  `  W ) z ) ) )
2717, 23, 26syl2anc 666 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( T  .(+)  ( N `  { X } ) )  <->  E. y  e.  T  E. z  e.  ( N `  { X } ) x  =  ( y ( +g  `  W ) z ) ) )
28273ad2ant1 1027 . . . . . . 7  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T 
.(+)  ( N `  { X } ) ) )  ->  ( x  e.  ( T  .(+)  ( N `
 { X }
) )  <->  E. y  e.  T  E. z  e.  ( N `  { X } ) x  =  ( y ( +g  `  W ) z ) ) )
2928adantr 467 . . . . . 6  |-  ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  ->  (
x  e.  ( T 
.(+)  ( N `  { X } ) )  <->  E. y  e.  T  E. z  e.  ( N `  { X } ) x  =  ( y ( +g  `  W ) z ) ) )
309, 29mpbid 214 . . . . 5  |-  ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  ->  E. y  e.  T  E. z  e.  ( N `  { X } ) x  =  ( y ( +g  `  W ) z ) )
31 simp1rr 1072 . . . . . . . . 9  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  -.  x  e.  T )
32 simp2l 1032 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  y  e.  T )
33 oveq2 6311 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( 0g `  W )  ->  (
y ( +g  `  W
) z )  =  ( y ( +g  `  W ) ( 0g
`  W ) ) )
3433eqeq2d 2437 . . . . . . . . . . . . . . 15  |-  ( z  =  ( 0g `  W )  ->  (
x  =  ( y ( +g  `  W
) z )  <->  x  =  ( y ( +g  `  W ) ( 0g
`  W ) ) ) )
3534biimpac 489 . . . . . . . . . . . . . 14  |-  ( ( x  =  ( y ( +g  `  W
) z )  /\  z  =  ( 0g `  W ) )  ->  x  =  ( y
( +g  `  W ) ( 0g `  W
) ) )
36123ad2ant1 1027 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T 
.(+)  ( N `  { X } ) ) )  ->  W  e.  LMod )
3736ad2antrr 731 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) ) )  ->  W  e.  LMod )
38163ad2ant1 1027 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T 
.(+)  ( N `  { X } ) ) )  ->  T  e.  S )
3938ad2antrr 731 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) ) )  ->  T  e.  S )
40 simprl 763 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) ) )  ->  y  e.  T )
4119, 13lssel 18154 . . . . . . . . . . . . . . . . . . 19  |-  ( ( T  e.  S  /\  y  e.  T )  ->  y  e.  V )
4239, 40, 41syl2anc 666 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) ) )  ->  y  e.  V )
43 eqid 2423 . . . . . . . . . . . . . . . . . . 19  |-  ( 0g
`  W )  =  ( 0g `  W
)
4419, 24, 43lmod0vrid 18115 . . . . . . . . . . . . . . . . . 18  |-  ( ( W  e.  LMod  /\  y  e.  V )  ->  (
y ( +g  `  W
) ( 0g `  W ) )  =  y )
4537, 42, 44syl2anc 666 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) ) )  ->  (
y ( +g  `  W
) ( 0g `  W ) )  =  y )
4645eqeq2d 2437 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) ) )  ->  (
x  =  ( y ( +g  `  W
) ( 0g `  W ) )  <->  x  =  y ) )
4746biimpd 211 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) ) )  ->  (
x  =  ( y ( +g  `  W
) ( 0g `  W ) )  ->  x  =  y )
)
4847ex 436 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  ->  (
( y  e.  T  /\  z  e.  ( N `  { X } ) )  -> 
( x  =  ( y ( +g  `  W
) ( 0g `  W ) )  ->  x  =  y )
) )
4935, 48syl7 71 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  ->  (
( y  e.  T  /\  z  e.  ( N `  { X } ) )  -> 
( ( x  =  ( y ( +g  `  W ) z )  /\  z  =  ( 0g `  W ) )  ->  x  =  y ) ) )
5049exp4a 610 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  ->  (
( y  e.  T  /\  z  e.  ( N `  { X } ) )  -> 
( x  =  ( y ( +g  `  W
) z )  -> 
( z  =  ( 0g `  W )  ->  x  =  y ) ) ) )
51503imp 1200 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  ( z  =  ( 0g `  W )  ->  x  =  y ) )
52 eleq1 2495 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
x  e.  T  <->  y  e.  T ) )
5352biimparc 490 . . . . . . . . . . 11  |-  ( ( y  e.  T  /\  x  =  y )  ->  x  e.  T )
5432, 51, 53syl6an 548 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  ( z  =  ( 0g `  W )  ->  x  e.  T ) )
5554necon3bd 2637 . . . . . . . . 9  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  ( -.  x  e.  T  ->  z  =/=  ( 0g `  W ) ) )
5631, 55mpd 15 . . . . . . . 8  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  z  =/=  ( 0g `  W ) )
57103ad2ant1 1027 . . . . . . . . . . . . 13  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T 
.(+)  ( N `  { X } ) ) )  ->  W  e.  LVec )
5857adantr 467 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  ->  W  e.  LVec )
59583ad2ant1 1027 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  W  e.  LVec )
60 lmodabl 18128 . . . . . . . . . . . 12  |-  ( W  e.  LMod  ->  W  e. 
Abel )
6111, 60syl 17 . . . . . . . . . . 11  |-  ( W  e.  LVec  ->  W  e. 
Abel )
6259, 61syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  W  e.  Abel )
63 simp1l1 1099 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  ph )
6463, 16syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  T  e.  S )
6564, 32, 41syl2anc 666 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  y  e.  V )
6659, 11syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  W  e.  LMod )
6763, 18syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  X  e.  V )
6866, 67, 21syl2anc 666 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  ( N `  { X } )  e.  S )
69 simp2r 1033 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  z  e.  ( N `  { X } ) )
7019, 13lssel 18154 . . . . . . . . . . 11  |-  ( ( ( N `  { X } )  e.  S  /\  z  e.  ( N `  { X } ) )  -> 
z  e.  V )
7168, 69, 70syl2anc 666 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  z  e.  V )
72 eqid 2423 . . . . . . . . . . 11  |-  ( -g `  W )  =  (
-g `  W )
7319, 24, 72ablpncan2 17451 . . . . . . . . . 10  |-  ( ( W  e.  Abel  /\  y  e.  V  /\  z  e.  V )  ->  (
( y ( +g  `  W ) z ) ( -g `  W
) y )  =  z )
7462, 65, 71, 73syl3anc 1265 . . . . . . . . 9  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  ( (
y ( +g  `  W
) z ) (
-g `  W )
y )  =  z )
75 lsmcv.u . . . . . . . . . . 11  |-  ( ph  ->  U  e.  S )
7663, 75syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  U  e.  S )
77 simp3 1008 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  x  =  ( y ( +g  `  W ) z ) )
78 simp1rl 1071 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  x  e.  U )
7977, 78eqeltrrd 2512 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  ( y
( +g  `  W ) z )  e.  U
)
80 simp1l2 1100 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  T  C.  U
)
813sselda 3465 . . . . . . . . . . 11  |-  ( ( T  C.  U  /\  y  e.  T )  ->  y  e.  U )
8280, 32, 81syl2anc 666 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  y  e.  U )
8372, 13lssvsubcl 18160 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( ( y ( +g  `  W
) z )  e.  U  /\  y  e.  U ) )  -> 
( ( y ( +g  `  W ) z ) ( -g `  W ) y )  e.  U )
8466, 76, 79, 82, 83syl22anc 1266 . . . . . . . . 9  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  ( (
y ( +g  `  W
) z ) (
-g `  W )
y )  e.  U
)
8574, 84eqeltrrd 2512 . . . . . . . 8  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  z  e.  U )
86593ad2ant1 1027 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  /\  ( x  e.  U  /\  -.  x  e.  T ) )  /\  ( y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y
( +g  `  W ) z ) )  /\  z  =/=  ( 0g `  W )  /\  z  e.  U )  ->  W  e.  LVec )
87633ad2ant1 1027 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  /\  ( x  e.  U  /\  -.  x  e.  T ) )  /\  ( y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y
( +g  `  W ) z ) )  /\  z  =/=  ( 0g `  W )  /\  z  e.  U )  ->  ph )
8887, 18syl 17 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  /\  ( x  e.  U  /\  -.  x  e.  T ) )  /\  ( y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y
( +g  `  W ) z ) )  /\  z  =/=  ( 0g `  W )  /\  z  e.  U )  ->  X  e.  V )
89 simp12r 1120 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  /\  ( x  e.  U  /\  -.  x  e.  T ) )  /\  ( y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y
( +g  `  W ) z ) )  /\  z  =/=  ( 0g `  W )  /\  z  e.  U )  ->  z  e.  ( N `  { X } ) )
90 simp2 1007 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  /\  ( x  e.  U  /\  -.  x  e.  T ) )  /\  ( y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y
( +g  `  W ) z ) )  /\  z  =/=  ( 0g `  W )  /\  z  e.  U )  ->  z  =/=  ( 0g `  W
) )
9119, 43, 20, 86, 88, 89, 90lspsneleq 18331 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  /\  ( x  e.  U  /\  -.  x  e.  T ) )  /\  ( y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y
( +g  `  W ) z ) )  /\  z  =/=  ( 0g `  W )  /\  z  e.  U )  ->  ( N `  { z } )  =  ( N `  { X } ) )
9286, 11syl 17 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  /\  ( x  e.  U  /\  -.  x  e.  T ) )  /\  ( y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y
( +g  `  W ) z ) )  /\  z  =/=  ( 0g `  W )  /\  z  e.  U )  ->  W  e.  LMod )
9387, 75syl 17 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  /\  ( x  e.  U  /\  -.  x  e.  T ) )  /\  ( y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y
( +g  `  W ) z ) )  /\  z  =/=  ( 0g `  W )  /\  z  e.  U )  ->  U  e.  S )
94 simp3 1008 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  /\  ( x  e.  U  /\  -.  x  e.  T ) )  /\  ( y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y
( +g  `  W ) z ) )  /\  z  =/=  ( 0g `  W )  /\  z  e.  U )  ->  z  e.  U )
9513, 20, 92, 93, 94lspsnel5a 18212 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  /\  ( x  e.  U  /\  -.  x  e.  T ) )  /\  ( y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y
( +g  `  W ) z ) )  /\  z  =/=  ( 0g `  W )  /\  z  e.  U )  ->  ( N `  { z } )  C_  U
)
9691, 95eqsstr3d 3500 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  /\  ( x  e.  U  /\  -.  x  e.  T ) )  /\  ( y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y
( +g  `  W ) z ) )  /\  z  =/=  ( 0g `  W )  /\  z  e.  U )  ->  ( N `  { X } )  C_  U
)
9756, 85, 96mpd3an23 1363 . . . . . . 7  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  ( N `  { X } ) 
C_  U )
98973exp 1205 . . . . . 6  |-  ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  ->  (
( y  e.  T  /\  z  e.  ( N `  { X } ) )  -> 
( x  =  ( y ( +g  `  W
) z )  -> 
( N `  { X } )  C_  U
) ) )
9998rexlimdvv 2924 . . . . 5  |-  ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  ->  ( E. y  e.  T  E. z  e.  ( N `  { X } ) x  =  ( y ( +g  `  W ) z )  ->  ( N `  { X } )  C_  U ) )
10030, 99mpd 15 . . . 4  |-  ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  ->  ( N `  { X } )  C_  U
)
1016, 100exlimddv 1771 . . 3  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T 
.(+)  ( N `  { X } ) ) )  ->  ( N `  { X } ) 
C_  U )
10215, 75sseldd 3466 . . . . 5  |-  ( ph  ->  U  e.  (SubGrp `  W ) )
10325lsmlub 17308 . . . . 5  |-  ( ( T  e.  (SubGrp `  W )  /\  ( N `  { X } )  e.  (SubGrp `  W )  /\  U  e.  (SubGrp `  W )
)  ->  ( ( T  C_  U  /\  ( N `  { X } )  C_  U
)  <->  ( T  .(+)  ( N `  { X } ) )  C_  U ) )
10417, 23, 102, 103syl3anc 1265 . . . 4  |-  ( ph  ->  ( ( T  C_  U  /\  ( N `  { X } )  C_  U )  <->  ( T  .(+) 
( N `  { X } ) )  C_  U ) )
1051043ad2ant1 1027 . . 3  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T 
.(+)  ( N `  { X } ) ) )  ->  ( ( T  C_  U  /\  ( N `  { X } )  C_  U
)  <->  ( T  .(+)  ( N `  { X } ) )  C_  U ) )
1064, 101, 105mpbi2and 930 . 2  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T 
.(+)  ( N `  { X } ) ) )  ->  ( T  .(+) 
( N `  { X } ) )  C_  U )
1071, 106eqssd 3482 1  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T 
.(+)  ( N `  { X } ) ) )  ->  U  =  ( T  .(+)  ( N `
 { X }
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 983    = wceq 1438   E.wex 1660    e. wcel 1869    =/= wne 2619   E.wrex 2777    C_ wss 3437    C. wpss 3438   {csn 3997   ` cfv 5599  (class class class)co 6303   Basecbs 15114   +g cplusg 15183   0gc0g 15331   -gcsg 16664  SubGrpcsubg 16804   LSSumclsm 17279   Abelcabl 17424   LModclmod 18084   LSubSpclss 18148   LSpanclspn 18187   LVecclvec 18318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-cnex 9597  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617  ax-pre-mulgt0 9618
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-om 6705  df-1st 6805  df-2nd 6806  df-tpos 6979  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-er 7369  df-en 7576  df-dom 7577  df-sdom 7578  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-sub 9864  df-neg 9865  df-nn 10612  df-2 10670  df-3 10671  df-ndx 15117  df-slot 15118  df-base 15119  df-sets 15120  df-ress 15121  df-plusg 15196  df-mulr 15197  df-0g 15333  df-mgm 16481  df-sgrp 16520  df-mnd 16530  df-submnd 16576  df-grp 16666  df-minusg 16667  df-sbg 16668  df-subg 16807  df-lsm 17281  df-cmn 17425  df-abl 17426  df-mgp 17717  df-ur 17729  df-ring 17775  df-oppr 17844  df-dvdsr 17862  df-unit 17863  df-invr 17893  df-drng 17970  df-lmod 18086  df-lss 18149  df-lsp 18188  df-lvec 18319
This theorem is referenced by:  lshpnelb  32475  lshpcmp  32479  lsmsatcv  32501  lsmcv2  32520  dochshpncl  34877
  Copyright terms: Public domain W3C validator