MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmcss Structured version   Unicode version

Theorem lsmcss 18076
Description: A subset of a pre-Hilbert space whose double orthocomplement has a projection decomposition is a closed subspace. This is the core of the proof that a topologically closed subspace is algebraically closed in a Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
lsmcss.c  |-  C  =  ( CSubSp `  W )
lsmcss.j  |-  V  =  ( Base `  W
)
lsmcss.o  |-  ._|_  =  ( ocv `  W )
lsmcss.p  |-  .(+)  =  (
LSSum `  W )
lsmcss.1  |-  ( ph  ->  W  e.  PreHil )
lsmcss.2  |-  ( ph  ->  S  C_  V )
lsmcss.3  |-  ( ph  ->  (  ._|_  `  (  ._|_  `  S ) )  C_  ( S  .(+)  (  ._|_  `  S ) ) )
Assertion
Ref Expression
lsmcss  |-  ( ph  ->  S  e.  C )

Proof of Theorem lsmcss
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmcss.3 . . . . . . 7  |-  ( ph  ->  (  ._|_  `  (  ._|_  `  S ) )  C_  ( S  .(+)  (  ._|_  `  S ) ) )
21sseld 3352 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 
._|_  `  (  ._|_  `  S
) )  ->  x  e.  ( S  .(+)  (  ._|_  `  S ) ) ) )
3 lsmcss.1 . . . . . . . 8  |-  ( ph  ->  W  e.  PreHil )
4 phllmod 18018 . . . . . . . 8  |-  ( W  e.  PreHil  ->  W  e.  LMod )
53, 4syl 16 . . . . . . 7  |-  ( ph  ->  W  e.  LMod )
6 lsmcss.2 . . . . . . 7  |-  ( ph  ->  S  C_  V )
7 lsmcss.j . . . . . . . . 9  |-  V  =  ( Base `  W
)
8 lsmcss.o . . . . . . . . 9  |-  ._|_  =  ( ocv `  W )
97, 8ocvss 18054 . . . . . . . 8  |-  (  ._|_  `  S )  C_  V
109a1i 11 . . . . . . 7  |-  ( ph  ->  (  ._|_  `  S ) 
C_  V )
11 eqid 2441 . . . . . . . 8  |-  ( +g  `  W )  =  ( +g  `  W )
12 lsmcss.p . . . . . . . 8  |-  .(+)  =  (
LSSum `  W )
137, 11, 12lsmelvalx 16132 . . . . . . 7  |-  ( ( W  e.  LMod  /\  S  C_  V  /\  (  ._|_  `  S )  C_  V
)  ->  ( x  e.  ( S  .(+)  (  ._|_  `  S ) )  <->  E. y  e.  S  E. z  e.  (  ._|_  `  S
) x  =  ( y ( +g  `  W
) z ) ) )
145, 6, 10, 13syl3anc 1213 . . . . . 6  |-  ( ph  ->  ( x  e.  ( S  .(+)  (  ._|_  `  S ) )  <->  E. y  e.  S  E. z  e.  (  ._|_  `  S
) x  =  ( y ( +g  `  W
) z ) ) )
152, 14sylibd 214 . . . . 5  |-  ( ph  ->  ( x  e.  ( 
._|_  `  (  ._|_  `  S
) )  ->  E. y  e.  S  E. z  e.  (  ._|_  `  S
) x  =  ( y ( +g  `  W
) z ) ) )
163ad2antrr 720 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
y  e.  S  /\  z  e.  (  ._|_  `  S ) ) )  /\  ( y ( +g  `  W ) z )  e.  ( 
._|_  `  (  ._|_  `  S
) ) )  ->  W  e.  PreHil )
176ad2antrr 720 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
y  e.  S  /\  z  e.  (  ._|_  `  S ) ) )  /\  ( y ( +g  `  W ) z )  e.  ( 
._|_  `  (  ._|_  `  S
) ) )  ->  S  C_  V )
18 simplrl 754 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
y  e.  S  /\  z  e.  (  ._|_  `  S ) ) )  /\  ( y ( +g  `  W ) z )  e.  ( 
._|_  `  (  ._|_  `  S
) ) )  -> 
y  e.  S )
1917, 18sseldd 3354 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
y  e.  S  /\  z  e.  (  ._|_  `  S ) ) )  /\  ( y ( +g  `  W ) z )  e.  ( 
._|_  `  (  ._|_  `  S
) ) )  -> 
y  e.  V )
20 simplrr 755 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
y  e.  S  /\  z  e.  (  ._|_  `  S ) ) )  /\  ( y ( +g  `  W ) z )  e.  ( 
._|_  `  (  ._|_  `  S
) ) )  -> 
z  e.  (  ._|_  `  S ) )
219, 20sseldi 3351 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
y  e.  S  /\  z  e.  (  ._|_  `  S ) ) )  /\  ( y ( +g  `  W ) z )  e.  ( 
._|_  `  (  ._|_  `  S
) ) )  -> 
z  e.  V )
22 eqid 2441 . . . . . . . . . . . . . . . 16  |-  (Scalar `  W )  =  (Scalar `  W )
23 eqid 2441 . . . . . . . . . . . . . . . 16  |-  ( .i
`  W )  =  ( .i `  W
)
24 eqid 2441 . . . . . . . . . . . . . . . 16  |-  ( +g  `  (Scalar `  W )
)  =  ( +g  `  (Scalar `  W )
)
2522, 23, 7, 11, 24ipdir 18027 . . . . . . . . . . . . . . 15  |-  ( ( W  e.  PreHil  /\  (
y  e.  V  /\  z  e.  V  /\  z  e.  V )
)  ->  ( (
y ( +g  `  W
) z ) ( .i `  W ) z )  =  ( ( y ( .i
`  W ) z ) ( +g  `  (Scalar `  W ) ) ( z ( .i `  W ) z ) ) )
2616, 19, 21, 21, 25syl13anc 1215 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
y  e.  S  /\  z  e.  (  ._|_  `  S ) ) )  /\  ( y ( +g  `  W ) z )  e.  ( 
._|_  `  (  ._|_  `  S
) ) )  -> 
( ( y ( +g  `  W ) z ) ( .i
`  W ) z )  =  ( ( y ( .i `  W ) z ) ( +g  `  (Scalar `  W ) ) ( z ( .i `  W ) z ) ) )
27 eqid 2441 . . . . . . . . . . . . . . . . . 18  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
287, 23, 22, 27, 8ocvi 18053 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  (  ._|_  `  S )  /\  y  e.  S )  ->  (
z ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) )
2920, 18, 28syl2anc 656 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
y  e.  S  /\  z  e.  (  ._|_  `  S ) ) )  /\  ( y ( +g  `  W ) z )  e.  ( 
._|_  `  (  ._|_  `  S
) ) )  -> 
( z ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) )
3022, 23, 7, 27iporthcom 18023 . . . . . . . . . . . . . . . . 17  |-  ( ( W  e.  PreHil  /\  z  e.  V  /\  y  e.  V )  ->  (
( z ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
)  <->  ( y ( .i `  W ) z )  =  ( 0g `  (Scalar `  W ) ) ) )
3116, 21, 19, 30syl3anc 1213 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
y  e.  S  /\  z  e.  (  ._|_  `  S ) ) )  /\  ( y ( +g  `  W ) z )  e.  ( 
._|_  `  (  ._|_  `  S
) ) )  -> 
( ( z ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) )  <->  ( y
( .i `  W
) z )  =  ( 0g `  (Scalar `  W ) ) ) )
3229, 31mpbid 210 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
y  e.  S  /\  z  e.  (  ._|_  `  S ) ) )  /\  ( y ( +g  `  W ) z )  e.  ( 
._|_  `  (  ._|_  `  S
) ) )  -> 
( y ( .i
`  W ) z )  =  ( 0g
`  (Scalar `  W )
) )
3332oveq1d 6105 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
y  e.  S  /\  z  e.  (  ._|_  `  S ) ) )  /\  ( y ( +g  `  W ) z )  e.  ( 
._|_  `  (  ._|_  `  S
) ) )  -> 
( ( y ( .i `  W ) z ) ( +g  `  (Scalar `  W )
) ( z ( .i `  W ) z ) )  =  ( ( 0g `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( z ( .i `  W ) z ) ) )
3416, 4syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
y  e.  S  /\  z  e.  (  ._|_  `  S ) ) )  /\  ( y ( +g  `  W ) z )  e.  ( 
._|_  `  (  ._|_  `  S
) ) )  ->  W  e.  LMod )
3522lmodfgrp 16937 . . . . . . . . . . . . . . . 16  |-  ( W  e.  LMod  ->  (Scalar `  W )  e.  Grp )
3634, 35syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
y  e.  S  /\  z  e.  (  ._|_  `  S ) ) )  /\  ( y ( +g  `  W ) z )  e.  ( 
._|_  `  (  ._|_  `  S
) ) )  -> 
(Scalar `  W )  e.  Grp )
37 eqid 2441 . . . . . . . . . . . . . . . . 17  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
3822, 23, 7, 37ipcl 18021 . . . . . . . . . . . . . . . 16  |-  ( ( W  e.  PreHil  /\  z  e.  V  /\  z  e.  V )  ->  (
z ( .i `  W ) z )  e.  ( Base `  (Scalar `  W ) ) )
3916, 21, 21, 38syl3anc 1213 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
y  e.  S  /\  z  e.  (  ._|_  `  S ) ) )  /\  ( y ( +g  `  W ) z )  e.  ( 
._|_  `  (  ._|_  `  S
) ) )  -> 
( z ( .i
`  W ) z )  e.  ( Base `  (Scalar `  W )
) )
4037, 24, 27grplid 15561 . . . . . . . . . . . . . . 15  |-  ( ( (Scalar `  W )  e.  Grp  /\  ( z ( .i `  W
) z )  e.  ( Base `  (Scalar `  W ) ) )  ->  ( ( 0g
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( z ( .i `  W ) z ) )  =  ( z ( .i `  W
) z ) )
4136, 39, 40syl2anc 656 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
y  e.  S  /\  z  e.  (  ._|_  `  S ) ) )  /\  ( y ( +g  `  W ) z )  e.  ( 
._|_  `  (  ._|_  `  S
) ) )  -> 
( ( 0g `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( z ( .i `  W ) z ) )  =  ( z ( .i `  W
) z ) )
4226, 33, 413eqtrd 2477 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
y  e.  S  /\  z  e.  (  ._|_  `  S ) ) )  /\  ( y ( +g  `  W ) z )  e.  ( 
._|_  `  (  ._|_  `  S
) ) )  -> 
( ( y ( +g  `  W ) z ) ( .i
`  W ) z )  =  ( z ( .i `  W
) z ) )
43 simpr 458 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
y  e.  S  /\  z  e.  (  ._|_  `  S ) ) )  /\  ( y ( +g  `  W ) z )  e.  ( 
._|_  `  (  ._|_  `  S
) ) )  -> 
( y ( +g  `  W ) z )  e.  (  ._|_  `  (  ._|_  `  S ) ) )
447, 23, 22, 27, 8ocvi 18053 . . . . . . . . . . . . . 14  |-  ( ( ( y ( +g  `  W ) z )  e.  (  ._|_  `  (  ._|_  `  S ) )  /\  z  e.  ( 
._|_  `  S ) )  ->  ( ( y ( +g  `  W
) z ) ( .i `  W ) z )  =  ( 0g `  (Scalar `  W ) ) )
4543, 20, 44syl2anc 656 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
y  e.  S  /\  z  e.  (  ._|_  `  S ) ) )  /\  ( y ( +g  `  W ) z )  e.  ( 
._|_  `  (  ._|_  `  S
) ) )  -> 
( ( y ( +g  `  W ) z ) ( .i
`  W ) z )  =  ( 0g
`  (Scalar `  W )
) )
4642, 45eqtr3d 2475 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  S  /\  z  e.  (  ._|_  `  S ) ) )  /\  ( y ( +g  `  W ) z )  e.  ( 
._|_  `  (  ._|_  `  S
) ) )  -> 
( z ( .i
`  W ) z )  =  ( 0g
`  (Scalar `  W )
) )
47 eqid 2441 . . . . . . . . . . . . . 14  |-  ( 0g
`  W )  =  ( 0g `  W
)
4822, 23, 7, 27, 47ipeq0 18026 . . . . . . . . . . . . 13  |-  ( ( W  e.  PreHil  /\  z  e.  V )  ->  (
( z ( .i
`  W ) z )  =  ( 0g
`  (Scalar `  W )
)  <->  z  =  ( 0g `  W ) ) )
4916, 21, 48syl2anc 656 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  S  /\  z  e.  (  ._|_  `  S ) ) )  /\  ( y ( +g  `  W ) z )  e.  ( 
._|_  `  (  ._|_  `  S
) ) )  -> 
( ( z ( .i `  W ) z )  =  ( 0g `  (Scalar `  W ) )  <->  z  =  ( 0g `  W ) ) )
5046, 49mpbid 210 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  S  /\  z  e.  (  ._|_  `  S ) ) )  /\  ( y ( +g  `  W ) z )  e.  ( 
._|_  `  (  ._|_  `  S
) ) )  -> 
z  =  ( 0g
`  W ) )
5150oveq2d 6106 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  S  /\  z  e.  (  ._|_  `  S ) ) )  /\  ( y ( +g  `  W ) z )  e.  ( 
._|_  `  (  ._|_  `  S
) ) )  -> 
( y ( +g  `  W ) z )  =  ( y ( +g  `  W ) ( 0g `  W
) ) )
52 lmodgrp 16935 . . . . . . . . . . . . 13  |-  ( W  e.  LMod  ->  W  e. 
Grp )
535, 52syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  W  e.  Grp )
5453ad2antrr 720 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  S  /\  z  e.  (  ._|_  `  S ) ) )  /\  ( y ( +g  `  W ) z )  e.  ( 
._|_  `  (  ._|_  `  S
) ) )  ->  W  e.  Grp )
557, 11, 47grprid 15562 . . . . . . . . . . 11  |-  ( ( W  e.  Grp  /\  y  e.  V )  ->  ( y ( +g  `  W ) ( 0g
`  W ) )  =  y )
5654, 19, 55syl2anc 656 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  S  /\  z  e.  (  ._|_  `  S ) ) )  /\  ( y ( +g  `  W ) z )  e.  ( 
._|_  `  (  ._|_  `  S
) ) )  -> 
( y ( +g  `  W ) ( 0g
`  W ) )  =  y )
5751, 56eqtrd 2473 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  S  /\  z  e.  (  ._|_  `  S ) ) )  /\  ( y ( +g  `  W ) z )  e.  ( 
._|_  `  (  ._|_  `  S
) ) )  -> 
( y ( +g  `  W ) z )  =  y )
5857, 18eqeltrd 2515 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  S  /\  z  e.  (  ._|_  `  S ) ) )  /\  ( y ( +g  `  W ) z )  e.  ( 
._|_  `  (  ._|_  `  S
) ) )  -> 
( y ( +g  `  W ) z )  e.  S )
5958ex 434 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  (  ._|_  `  S
) ) )  -> 
( ( y ( +g  `  W ) z )  e.  ( 
._|_  `  (  ._|_  `  S
) )  ->  (
y ( +g  `  W
) z )  e.  S ) )
60 eleq1 2501 . . . . . . . 8  |-  ( x  =  ( y ( +g  `  W ) z )  ->  (
x  e.  (  ._|_  `  (  ._|_  `  S ) )  <->  ( y ( +g  `  W ) z )  e.  ( 
._|_  `  (  ._|_  `  S
) ) ) )
61 eleq1 2501 . . . . . . . 8  |-  ( x  =  ( y ( +g  `  W ) z )  ->  (
x  e.  S  <->  ( y
( +g  `  W ) z )  e.  S
) )
6260, 61imbi12d 320 . . . . . . 7  |-  ( x  =  ( y ( +g  `  W ) z )  ->  (
( x  e.  ( 
._|_  `  (  ._|_  `  S
) )  ->  x  e.  S )  <->  ( (
y ( +g  `  W
) z )  e.  (  ._|_  `  (  ._|_  `  S ) )  -> 
( y ( +g  `  W ) z )  e.  S ) ) )
6359, 62syl5ibrcom 222 . . . . . 6  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  (  ._|_  `  S
) ) )  -> 
( x  =  ( y ( +g  `  W
) z )  -> 
( x  e.  ( 
._|_  `  (  ._|_  `  S
) )  ->  x  e.  S ) ) )
6463rexlimdvva 2846 . . . . 5  |-  ( ph  ->  ( E. y  e.  S  E. z  e.  (  ._|_  `  S ) x  =  ( y ( +g  `  W
) z )  -> 
( x  e.  ( 
._|_  `  (  ._|_  `  S
) )  ->  x  e.  S ) ) )
6515, 64syld 44 . . . 4  |-  ( ph  ->  ( x  e.  ( 
._|_  `  (  ._|_  `  S
) )  ->  (
x  e.  (  ._|_  `  (  ._|_  `  S ) )  ->  x  e.  S ) ) )
6665pm2.43d 48 . . 3  |-  ( ph  ->  ( x  e.  ( 
._|_  `  (  ._|_  `  S
) )  ->  x  e.  S ) )
6766ssrdv 3359 . 2  |-  ( ph  ->  (  ._|_  `  (  ._|_  `  S ) )  C_  S )
68 lsmcss.c . . . 4  |-  C  =  ( CSubSp `  W )
697, 68, 8iscss2 18070 . . 3  |-  ( ( W  e.  PreHil  /\  S  C_  V )  ->  ( S  e.  C  <->  (  ._|_  `  (  ._|_  `  S ) )  C_  S )
)
703, 6, 69syl2anc 656 . 2  |-  ( ph  ->  ( S  e.  C  <->  ( 
._|_  `  (  ._|_  `  S
) )  C_  S
) )
7167, 70mpbird 232 1  |-  ( ph  ->  S  e.  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761   E.wrex 2714    C_ wss 3325   ` cfv 5415  (class class class)co 6090   Basecbs 14170   +g cplusg 14234  Scalarcsca 14237   .icip 14239   0gc0g 14374   Grpcgrp 15406   LSSumclsm 16126   LModclmod 16928   PreHilcphl 18012   ocvcocv 18044   CSubSpccss 18045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-tpos 6744  df-recs 6828  df-rdg 6862  df-er 7097  df-map 7212  df-en 7307  df-dom 7308  df-sdom 7309  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-plusg 14247  df-mulr 14248  df-sca 14250  df-vsca 14251  df-ip 14252  df-0g 14376  df-mnd 15411  df-mhm 15460  df-grp 15538  df-ghm 15738  df-lsm 16128  df-mgp 16582  df-ur 16594  df-rng 16637  df-oppr 16705  df-rnghom 16796  df-staf 16910  df-srng 16911  df-lmod 16930  df-lmhm 17081  df-lvec 17162  df-sra 17231  df-rgmod 17232  df-phl 18014  df-ocv 18047  df-css 18048
This theorem is referenced by:  pjcss  18100
  Copyright terms: Public domain W3C validator