Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpne Structured version   Unicode version

Theorem lshpne 33779
Description: A hyperplane is not equal to the vector space. (Contributed by NM, 4-Jul-2014.)
Hypotheses
Ref Expression
lshpne.v  |-  V  =  ( Base `  W
)
lshpne.h  |-  H  =  (LSHyp `  W )
lshpne.w  |-  ( ph  ->  W  e.  LMod )
lshpne.u  |-  ( ph  ->  U  e.  H )
Assertion
Ref Expression
lshpne  |-  ( ph  ->  U  =/=  V )

Proof of Theorem lshpne
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 lshpne.u . . 3  |-  ( ph  ->  U  e.  H )
2 lshpne.w . . . 4  |-  ( ph  ->  W  e.  LMod )
3 lshpne.v . . . . 5  |-  V  =  ( Base `  W
)
4 eqid 2467 . . . . 5  |-  ( LSpan `  W )  =  (
LSpan `  W )
5 eqid 2467 . . . . 5  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
6 lshpne.h . . . . 5  |-  H  =  (LSHyp `  W )
73, 4, 5, 6islshp 33776 . . . 4  |-  ( W  e.  LMod  ->  ( U  e.  H  <->  ( U  e.  ( LSubSp `  W )  /\  U  =/=  V  /\  E. v  e.  V  ( ( LSpan `  W
) `  ( U  u.  { v } ) )  =  V ) ) )
82, 7syl 16 . . 3  |-  ( ph  ->  ( U  e.  H  <->  ( U  e.  ( LSubSp `  W )  /\  U  =/=  V  /\  E. v  e.  V  ( ( LSpan `  W ) `  ( U  u.  { v } ) )  =  V ) ) )
91, 8mpbid 210 . 2  |-  ( ph  ->  ( U  e.  (
LSubSp `  W )  /\  U  =/=  V  /\  E. v  e.  V  (
( LSpan `  W ) `  ( U  u.  {
v } ) )  =  V ) )
109simp2d 1009 1  |-  ( ph  ->  U  =/=  V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   E.wrex 2815    u. cun 3474   {csn 4027   ` cfv 5586   Basecbs 14483   LModclmod 17292   LSubSpclss 17358   LSpanclspn 17397  LSHypclsh 33772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-iota 5549  df-fun 5588  df-fv 5594  df-lshyp 33774
This theorem is referenced by:  lshpnel  33780  lshpcmp  33785  lkrshp3  33903  lkrshp4  33905  dochshpncl  36181  dochlkr  36182  dochkrshp  36183  dochsatshpb  36249
  Copyright terms: Public domain W3C validator