Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrlem6 Structured version   Unicode version

Theorem lshpkrlem6 32390
Description: Lemma for lshpkrex 32393. Show linearlity of  G. (Contributed by NM, 17-Jul-2014.)
Hypotheses
Ref Expression
lshpkrlem.v  |-  V  =  ( Base `  W
)
lshpkrlem.a  |-  .+  =  ( +g  `  W )
lshpkrlem.n  |-  N  =  ( LSpan `  W )
lshpkrlem.p  |-  .(+)  =  (
LSSum `  W )
lshpkrlem.h  |-  H  =  (LSHyp `  W )
lshpkrlem.w  |-  ( ph  ->  W  e.  LVec )
lshpkrlem.u  |-  ( ph  ->  U  e.  H )
lshpkrlem.z  |-  ( ph  ->  Z  e.  V )
lshpkrlem.x  |-  ( ph  ->  X  e.  V )
lshpkrlem.e  |-  ( ph  ->  ( U  .(+)  ( N `
 { Z }
) )  =  V )
lshpkrlem.d  |-  D  =  (Scalar `  W )
lshpkrlem.k  |-  K  =  ( Base `  D
)
lshpkrlem.t  |-  .x.  =  ( .s `  W )
lshpkrlem.o  |-  .0.  =  ( 0g `  D )
lshpkrlem.g  |-  G  =  ( x  e.  V  |->  ( iota_ k  e.  K  E. y  e.  U  x  =  ( y  .+  ( k  .x.  Z
) ) ) )
Assertion
Ref Expression
lshpkrlem6  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  -> 
( G `  (
( l  .x.  u
)  .+  v )
)  =  ( ( l ( .r `  D ) ( G `
 u ) ) ( +g  `  D
) ( G `  v ) ) )
Distinct variable groups:    x, k,
y,  .+    k, K, x    .0. , k    .x. , k, x, y    U, k, x, y    x, V    k, X, x, y   
k, Z, x, y    .+ , l    G, l    K, l    U, l    X, l    Z, l, k, x, y    .x. , l    u, k, v, x, y, l
Allowed substitution hints:    ph( x, y, v, u, k, l)    D( x, y, v, u, k, l)    .+ ( v, u)    .(+) (
x, y, v, u, k, l)    .x. ( v, u)    U( v, u)    G( x, y, v, u, k)    H( x, y, v, u, k, l)    K( y, v, u)    N( x, y, v, u, k, l)    V( y, v, u, k, l)    W( x, y, v, u, k, l)    X( v, u)    .0. ( x, y, v, u, l)    Z( v, u)

Proof of Theorem lshpkrlem6
Dummy variables  z 
s  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lshpkrlem.v . . 3  |-  V  =  ( Base `  W
)
2 lshpkrlem.a . . 3  |-  .+  =  ( +g  `  W )
3 lshpkrlem.n . . 3  |-  N  =  ( LSpan `  W )
4 lshpkrlem.p . . 3  |-  .(+)  =  (
LSSum `  W )
5 lshpkrlem.h . . 3  |-  H  =  (LSHyp `  W )
6 lshpkrlem.w . . . 4  |-  ( ph  ->  W  e.  LVec )
76adantr 466 . . 3  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  ->  W  e.  LVec )
8 lshpkrlem.u . . . 4  |-  ( ph  ->  U  e.  H )
98adantr 466 . . 3  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  ->  U  e.  H )
10 lshpkrlem.z . . . 4  |-  ( ph  ->  Z  e.  V )
1110adantr 466 . . 3  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  ->  Z  e.  V )
12 simpr2 1012 . . 3  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  ->  u  e.  V )
13 lshpkrlem.e . . . 4  |-  ( ph  ->  ( U  .(+)  ( N `
 { Z }
) )  =  V )
1413adantr 466 . . 3  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  -> 
( U  .(+)  ( N `
 { Z }
) )  =  V )
15 lshpkrlem.d . . 3  |-  D  =  (Scalar `  W )
16 lshpkrlem.k . . 3  |-  K  =  ( Base `  D
)
17 lshpkrlem.t . . 3  |-  .x.  =  ( .s `  W )
18 lshpkrlem.o . . 3  |-  .0.  =  ( 0g `  D )
19 lshpkrlem.g . . 3  |-  G  =  ( x  e.  V  |->  ( iota_ k  e.  K  E. y  e.  U  x  =  ( y  .+  ( k  .x.  Z
) ) ) )
201, 2, 3, 4, 5, 7, 9, 11, 12, 14, 15, 16, 17, 18, 19lshpkrlem3 32387 . 2  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  ->  E. r  e.  U  u  =  ( r  .+  ( ( G `  u )  .x.  Z
) ) )
21 simpr3 1013 . . 3  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  -> 
v  e.  V )
221, 2, 3, 4, 5, 7, 9, 11, 21, 14, 15, 16, 17, 18, 19lshpkrlem3 32387 . 2  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  ->  E. s  e.  U  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) ) )
23 lveclmod 18264 . . . . 5  |-  ( W  e.  LVec  ->  W  e. 
LMod )
247, 23syl 17 . . . 4  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  ->  W  e.  LMod )
25 simpr1 1011 . . . . 5  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  -> 
l  e.  K )
261, 15, 17, 16lmodvscl 18043 . . . . 5  |-  ( ( W  e.  LMod  /\  l  e.  K  /\  u  e.  V )  ->  (
l  .x.  u )  e.  V )
2724, 25, 12, 26syl3anc 1264 . . . 4  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  -> 
( l  .x.  u
)  e.  V )
281, 2lmodvacl 18040 . . . 4  |-  ( ( W  e.  LMod  /\  (
l  .x.  u )  e.  V  /\  v  e.  V )  ->  (
( l  .x.  u
)  .+  v )  e.  V )
2924, 27, 21, 28syl3anc 1264 . . 3  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  -> 
( ( l  .x.  u )  .+  v
)  e.  V )
301, 2, 3, 4, 5, 7, 9, 11, 29, 14, 15, 16, 17, 18, 19lshpkrlem3 32387 . 2  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  ->  E. z  e.  U  ( ( l  .x.  u )  .+  v
)  =  ( z 
.+  ( ( G `
 ( ( l 
.x.  u )  .+  v ) )  .x.  Z ) ) )
31 3reeanv 3004 . . 3  |-  ( E. r  e.  U  E. s  e.  U  E. z  e.  U  (
u  =  ( r 
.+  ( ( G `
 u )  .x.  Z ) )  /\  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) )  <->  ( E. r  e.  U  u  =  ( r  .+  ( ( G `  u )  .x.  Z
) )  /\  E. s  e.  U  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  E. z  e.  U  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) ) )
32 simp1l 1029 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  K  /\  u  e.  V  /\  v  e.  V )
)  /\  ( (
r  e.  U  /\  s  e.  U )  /\  z  e.  U
)  /\  ( u  =  ( r  .+  ( ( G `  u )  .x.  Z
) )  /\  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) ) )  ->  ph )
33 simp1r1 1101 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  K  /\  u  e.  V  /\  v  e.  V )
)  /\  ( (
r  e.  U  /\  s  e.  U )  /\  z  e.  U
)  /\  ( u  =  ( r  .+  ( ( G `  u )  .x.  Z
) )  /\  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) ) )  ->  l  e.  K
)
34 simp1r2 1102 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  K  /\  u  e.  V  /\  v  e.  V )
)  /\  ( (
r  e.  U  /\  s  e.  U )  /\  z  e.  U
)  /\  ( u  =  ( r  .+  ( ( G `  u )  .x.  Z
) )  /\  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) ) )  ->  u  e.  V
)
35 simp1r3 1103 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  K  /\  u  e.  V  /\  v  e.  V )
)  /\  ( (
r  e.  U  /\  s  e.  U )  /\  z  e.  U
)  /\  ( u  =  ( r  .+  ( ( G `  u )  .x.  Z
) )  /\  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) ) )  ->  v  e.  V
)
36 simp2ll 1072 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  K  /\  u  e.  V  /\  v  e.  V )
)  /\  ( (
r  e.  U  /\  s  e.  U )  /\  z  e.  U
)  /\  ( u  =  ( r  .+  ( ( G `  u )  .x.  Z
) )  /\  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) ) )  ->  r  e.  U
)
37 simp2lr 1073 . . . . . . . . 9  |-  ( ( ( ph  /\  (
l  e.  K  /\  u  e.  V  /\  v  e.  V )
)  /\  ( (
r  e.  U  /\  s  e.  U )  /\  z  e.  U
)  /\  ( u  =  ( r  .+  ( ( G `  u )  .x.  Z
) )  /\  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) ) )  ->  s  e.  U
)
38 simp2r 1032 . . . . . . . . 9  |-  ( ( ( ph  /\  (
l  e.  K  /\  u  e.  V  /\  v  e.  V )
)  /\  ( (
r  e.  U  /\  s  e.  U )  /\  z  e.  U
)  /\  ( u  =  ( r  .+  ( ( G `  u )  .x.  Z
) )  /\  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) ) )  ->  z  e.  U
)
3937, 38jca 534 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  K  /\  u  e.  V  /\  v  e.  V )
)  /\  ( (
r  e.  U  /\  s  e.  U )  /\  z  e.  U
)  /\  ( u  =  ( r  .+  ( ( G `  u )  .x.  Z
) )  /\  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) ) )  ->  ( s  e.  U  /\  z  e.  U ) )
40 simp31 1041 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  K  /\  u  e.  V  /\  v  e.  V )
)  /\  ( (
r  e.  U  /\  s  e.  U )  /\  z  e.  U
)  /\  ( u  =  ( r  .+  ( ( G `  u )  .x.  Z
) )  /\  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) ) )  ->  u  =  ( r  .+  ( ( G `  u ) 
.x.  Z ) ) )
41 simp32 1042 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  K  /\  u  e.  V  /\  v  e.  V )
)  /\  ( (
r  e.  U  /\  s  e.  U )  /\  z  e.  U
)  /\  ( u  =  ( r  .+  ( ( G `  u )  .x.  Z
) )  /\  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) ) )  ->  v  =  ( s  .+  ( ( G `  v ) 
.x.  Z ) ) )
42 simp33 1043 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  K  /\  u  e.  V  /\  v  e.  V )
)  /\  ( (
r  e.  U  /\  s  e.  U )  /\  z  e.  U
)  /\  ( u  =  ( r  .+  ( ( G `  u )  .x.  Z
) )  /\  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) ) )  ->  ( ( l 
.x.  u )  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u ) 
.+  v ) ) 
.x.  Z ) ) )
431, 2, 3, 4, 5, 6, 8, 10, 10, 13, 15, 16, 17, 18, 19lshpkrlem5 32389 . . . . . . . 8  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  U  /\  ( s  e.  U  /\  z  e.  U
) )  /\  (
u  =  ( r 
.+  ( ( G `
 u )  .x.  Z ) )  /\  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) ) )  ->  ( G `  ( ( l  .x.  u )  .+  v
) )  =  ( ( l ( .r
`  D ) ( G `  u ) ) ( +g  `  D
) ( G `  v ) ) )
4432, 33, 34, 35, 36, 39, 40, 41, 42, 43syl333anc 1296 . . . . . . 7  |-  ( ( ( ph  /\  (
l  e.  K  /\  u  e.  V  /\  v  e.  V )
)  /\  ( (
r  e.  U  /\  s  e.  U )  /\  z  e.  U
)  /\  ( u  =  ( r  .+  ( ( G `  u )  .x.  Z
) )  /\  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) ) )  ->  ( G `  ( ( l  .x.  u )  .+  v
) )  =  ( ( l ( .r
`  D ) ( G `  u ) ) ( +g  `  D
) ( G `  v ) ) )
45443exp 1204 . . . . . 6  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  -> 
( ( ( r  e.  U  /\  s  e.  U )  /\  z  e.  U )  ->  (
( u  =  ( r  .+  ( ( G `  u ) 
.x.  Z ) )  /\  v  =  ( s  .+  ( ( G `  v ) 
.x.  Z ) )  /\  ( ( l 
.x.  u )  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u ) 
.+  v ) ) 
.x.  Z ) ) )  ->  ( G `  ( ( l  .x.  u )  .+  v
) )  =  ( ( l ( .r
`  D ) ( G `  u ) ) ( +g  `  D
) ( G `  v ) ) ) ) )
4645expdimp 438 . . . . 5  |-  ( ( ( ph  /\  (
l  e.  K  /\  u  e.  V  /\  v  e.  V )
)  /\  ( r  e.  U  /\  s  e.  U ) )  -> 
( z  e.  U  ->  ( ( u  =  ( r  .+  (
( G `  u
)  .x.  Z )
)  /\  v  =  ( s  .+  (
( G `  v
)  .x.  Z )
)  /\  ( (
l  .x.  u )  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u ) 
.+  v ) ) 
.x.  Z ) ) )  ->  ( G `  ( ( l  .x.  u )  .+  v
) )  =  ( ( l ( .r
`  D ) ( G `  u ) ) ( +g  `  D
) ( G `  v ) ) ) ) )
4746rexlimdv 2922 . . . 4  |-  ( ( ( ph  /\  (
l  e.  K  /\  u  e.  V  /\  v  e.  V )
)  /\  ( r  e.  U  /\  s  e.  U ) )  -> 
( E. z  e.  U  ( u  =  ( r  .+  (
( G `  u
)  .x.  Z )
)  /\  v  =  ( s  .+  (
( G `  v
)  .x.  Z )
)  /\  ( (
l  .x.  u )  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u ) 
.+  v ) ) 
.x.  Z ) ) )  ->  ( G `  ( ( l  .x.  u )  .+  v
) )  =  ( ( l ( .r
`  D ) ( G `  u ) ) ( +g  `  D
) ( G `  v ) ) ) )
4847rexlimdvva 2931 . . 3  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  -> 
( E. r  e.  U  E. s  e.  U  E. z  e.  U  ( u  =  ( r  .+  (
( G `  u
)  .x.  Z )
)  /\  v  =  ( s  .+  (
( G `  v
)  .x.  Z )
)  /\  ( (
l  .x.  u )  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u ) 
.+  v ) ) 
.x.  Z ) ) )  ->  ( G `  ( ( l  .x.  u )  .+  v
) )  =  ( ( l ( .r
`  D ) ( G `  u ) ) ( +g  `  D
) ( G `  v ) ) ) )
4931, 48syl5bir 221 . 2  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  -> 
( ( E. r  e.  U  u  =  ( r  .+  (
( G `  u
)  .x.  Z )
)  /\  E. s  e.  U  v  =  ( s  .+  (
( G `  v
)  .x.  Z )
)  /\  E. z  e.  U  ( (
l  .x.  u )  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u ) 
.+  v ) ) 
.x.  Z ) ) )  ->  ( G `  ( ( l  .x.  u )  .+  v
) )  =  ( ( l ( .r
`  D ) ( G `  u ) ) ( +g  `  D
) ( G `  v ) ) ) )
5020, 22, 30, 49mp3and 1363 1  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  -> 
( G `  (
( l  .x.  u
)  .+  v )
)  =  ( ( l ( .r `  D ) ( G `
 u ) ) ( +g  `  D
) ( G `  v ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870   E.wrex 2783   {csn 4002    |-> cmpt 4484   ` cfv 5601   iota_crio 6266  (class class class)co 6305   Basecbs 15084   +g cplusg 15152   .rcmulr 15153  Scalarcsca 15155   .scvsca 15156   0gc0g 15297   LSSumclsm 17221   LModclmod 18026   LSpanclspn 18129   LVecclvec 18260  LSHypclsh 32250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-tpos 6981  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-2 10668  df-3 10669  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15165  df-mulr 15166  df-0g 15299  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-submnd 16534  df-grp 16624  df-minusg 16625  df-sbg 16626  df-subg 16765  df-cntz 16922  df-lsm 17223  df-cmn 17367  df-abl 17368  df-mgp 17659  df-ur 17671  df-ring 17717  df-oppr 17786  df-dvdsr 17804  df-unit 17805  df-invr 17835  df-drng 17912  df-lmod 18028  df-lss 18091  df-lsp 18130  df-lvec 18261  df-lshyp 32252
This theorem is referenced by:  lshpkrcl  32391
  Copyright terms: Public domain W3C validator