Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrlem4 Structured version   Unicode version

Theorem lshpkrlem4 35254
Description: Lemma for lshpkrex 35259. Part of showing linearity of  G. (Contributed by NM, 16-Jul-2014.)
Hypotheses
Ref Expression
lshpkrlem.v  |-  V  =  ( Base `  W
)
lshpkrlem.a  |-  .+  =  ( +g  `  W )
lshpkrlem.n  |-  N  =  ( LSpan `  W )
lshpkrlem.p  |-  .(+)  =  (
LSSum `  W )
lshpkrlem.h  |-  H  =  (LSHyp `  W )
lshpkrlem.w  |-  ( ph  ->  W  e.  LVec )
lshpkrlem.u  |-  ( ph  ->  U  e.  H )
lshpkrlem.z  |-  ( ph  ->  Z  e.  V )
lshpkrlem.x  |-  ( ph  ->  X  e.  V )
lshpkrlem.e  |-  ( ph  ->  ( U  .(+)  ( N `
 { Z }
) )  =  V )
lshpkrlem.d  |-  D  =  (Scalar `  W )
lshpkrlem.k  |-  K  =  ( Base `  D
)
lshpkrlem.t  |-  .x.  =  ( .s `  W )
lshpkrlem.o  |-  .0.  =  ( 0g `  D )
lshpkrlem.g  |-  G  =  ( x  e.  V  |->  ( iota_ k  e.  K  E. y  e.  U  x  =  ( y  .+  ( k  .x.  Z
) ) ) )
Assertion
Ref Expression
lshpkrlem4  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )  /\  ( u  =  ( r  .+  ( ( G `  u ) 
.x.  Z ) )  /\  v  =  ( s  .+  ( ( G `  v ) 
.x.  Z ) ) ) )  ->  (
( l  .x.  u
)  .+  v )  =  ( ( ( l  .x.  r ) 
.+  s )  .+  ( ( ( l ( .r `  D
) ( G `  u ) ) ( +g  `  D ) ( G `  v
) )  .x.  Z
) ) )
Distinct variable groups:    x, k,
y,  .+    k, K, x    .0. , k    .x. , k, x, y    U, k, x, y    x, V    k, X, x, y   
k, Z, x, y    .+ , l    G, l    K, l    U, l    X, l    Z, l, k, x, y    .x. , l    u, k, v, x, y
Allowed substitution hints:    ph( x, y, v, u, k, s, r, l)    D( x, y, v, u, k, s, r, l)    .+ ( v, u, s, r)    .(+) ( x, y, v, u, k, s, r, l)    .x. ( v, u, s, r)    U( v, u, s, r)    G( x, y, v, u, k, s, r)    H( x, y, v, u, k, s, r, l)    K( y, v, u, s, r)    N( x, y, v, u, k, s, r, l)    V( y, v, u, k, s, r, l)    W( x, y, v, u, k, s, r, l)    X( v, u, s, r)    .0. ( x, y, v, u, s, r, l)    Z( v, u, s, r)

Proof of Theorem lshpkrlem4
StepHypRef Expression
1 simp3l 1022 . . . 4  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )  /\  ( u  =  ( r  .+  ( ( G `  u ) 
.x.  Z ) )  /\  v  =  ( s  .+  ( ( G `  v ) 
.x.  Z ) ) ) )  ->  u  =  ( r  .+  ( ( G `  u )  .x.  Z
) ) )
21oveq2d 6286 . . 3  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )  /\  ( u  =  ( r  .+  ( ( G `  u ) 
.x.  Z ) )  /\  v  =  ( s  .+  ( ( G `  v ) 
.x.  Z ) ) ) )  ->  (
l  .x.  u )  =  ( l  .x.  ( r  .+  (
( G `  u
)  .x.  Z )
) ) )
3 simp3r 1023 . . 3  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )  /\  ( u  =  ( r  .+  ( ( G `  u ) 
.x.  Z ) )  /\  v  =  ( s  .+  ( ( G `  v ) 
.x.  Z ) ) ) )  ->  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) ) )
42, 3oveq12d 6288 . 2  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )  /\  ( u  =  ( r  .+  ( ( G `  u ) 
.x.  Z ) )  /\  v  =  ( s  .+  ( ( G `  v ) 
.x.  Z ) ) ) )  ->  (
( l  .x.  u
)  .+  v )  =  ( ( l 
.x.  ( r  .+  ( ( G `  u )  .x.  Z
) ) )  .+  ( s  .+  (
( G `  v
)  .x.  Z )
) ) )
5 simpl1 997 . . . . . . . 8  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )
)  ->  ph )
6 lshpkrlem.w . . . . . . . 8  |-  ( ph  ->  W  e.  LVec )
7 lveclmod 17950 . . . . . . . 8  |-  ( W  e.  LVec  ->  W  e. 
LMod )
85, 6, 73syl 20 . . . . . . 7  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )
)  ->  W  e.  LMod )
9 simpl2 998 . . . . . . 7  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )
)  ->  l  e.  K )
10 simpr2 1001 . . . . . . 7  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )
)  ->  r  e.  V )
11 simpl3 999 . . . . . . . . 9  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )
)  ->  u  e.  V )
12 lshpkrlem.v . . . . . . . . . 10  |-  V  =  ( Base `  W
)
13 lshpkrlem.a . . . . . . . . . 10  |-  .+  =  ( +g  `  W )
14 lshpkrlem.n . . . . . . . . . 10  |-  N  =  ( LSpan `  W )
15 lshpkrlem.p . . . . . . . . . 10  |-  .(+)  =  (
LSSum `  W )
16 lshpkrlem.h . . . . . . . . . 10  |-  H  =  (LSHyp `  W )
176adantr 463 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  V )  ->  W  e.  LVec )
18 lshpkrlem.u . . . . . . . . . . 11  |-  ( ph  ->  U  e.  H )
1918adantr 463 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  V )  ->  U  e.  H )
20 lshpkrlem.z . . . . . . . . . . 11  |-  ( ph  ->  Z  e.  V )
2120adantr 463 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  V )  ->  Z  e.  V )
22 simpr 459 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  V )  ->  u  e.  V )
23 lshpkrlem.e . . . . . . . . . . 11  |-  ( ph  ->  ( U  .(+)  ( N `
 { Z }
) )  =  V )
2423adantr 463 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  V )  ->  ( U  .(+)  ( N `  { Z } ) )  =  V )
25 lshpkrlem.d . . . . . . . . . 10  |-  D  =  (Scalar `  W )
26 lshpkrlem.k . . . . . . . . . 10  |-  K  =  ( Base `  D
)
27 lshpkrlem.t . . . . . . . . . 10  |-  .x.  =  ( .s `  W )
28 lshpkrlem.o . . . . . . . . . 10  |-  .0.  =  ( 0g `  D )
29 lshpkrlem.g . . . . . . . . . 10  |-  G  =  ( x  e.  V  |->  ( iota_ k  e.  K  E. y  e.  U  x  =  ( y  .+  ( k  .x.  Z
) ) ) )
3012, 13, 14, 15, 16, 17, 19, 21, 22, 24, 25, 26, 27, 28, 29lshpkrlem2 35252 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  V )  ->  ( G `  u )  e.  K )
315, 11, 30syl2anc 659 . . . . . . . 8  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )
)  ->  ( G `  u )  e.  K
)
325, 20syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )
)  ->  Z  e.  V )
3312, 25, 27, 26lmodvscl 17727 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( G `  u )  e.  K  /\  Z  e.  V )  ->  (
( G `  u
)  .x.  Z )  e.  V )
348, 31, 32, 33syl3anc 1226 . . . . . . 7  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )
)  ->  ( ( G `  u )  .x.  Z )  e.  V
)
3512, 13, 25, 27, 26lmodvsdi 17733 . . . . . . 7  |-  ( ( W  e.  LMod  /\  (
l  e.  K  /\  r  e.  V  /\  ( ( G `  u )  .x.  Z
)  e.  V ) )  ->  ( l  .x.  ( r  .+  (
( G `  u
)  .x.  Z )
) )  =  ( ( l  .x.  r
)  .+  ( l  .x.  ( ( G `  u )  .x.  Z
) ) ) )
368, 9, 10, 34, 35syl13anc 1228 . . . . . 6  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )
)  ->  ( l  .x.  ( r  .+  (
( G `  u
)  .x.  Z )
) )  =  ( ( l  .x.  r
)  .+  ( l  .x.  ( ( G `  u )  .x.  Z
) ) ) )
37 eqid 2454 . . . . . . . . 9  |-  ( .r
`  D )  =  ( .r `  D
)
3812, 25, 27, 26, 37lmodvsass 17735 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  (
l  e.  K  /\  ( G `  u )  e.  K  /\  Z  e.  V ) )  -> 
( ( l ( .r `  D ) ( G `  u
) )  .x.  Z
)  =  ( l 
.x.  ( ( G `
 u )  .x.  Z ) ) )
398, 9, 31, 32, 38syl13anc 1228 . . . . . . 7  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )
)  ->  ( (
l ( .r `  D ) ( G `
 u ) ) 
.x.  Z )  =  ( l  .x.  (
( G `  u
)  .x.  Z )
) )
4039oveq2d 6286 . . . . . 6  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )
)  ->  ( (
l  .x.  r )  .+  ( ( l ( .r `  D ) ( G `  u
) )  .x.  Z
) )  =  ( ( l  .x.  r
)  .+  ( l  .x.  ( ( G `  u )  .x.  Z
) ) ) )
4136, 40eqtr4d 2498 . . . . 5  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )
)  ->  ( l  .x.  ( r  .+  (
( G `  u
)  .x.  Z )
) )  =  ( ( l  .x.  r
)  .+  ( (
l ( .r `  D ) ( G `
 u ) ) 
.x.  Z ) ) )
4241oveq1d 6285 . . . 4  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )
)  ->  ( (
l  .x.  ( r  .+  ( ( G `  u )  .x.  Z
) ) )  .+  ( s  .+  (
( G `  v
)  .x.  Z )
) )  =  ( ( ( l  .x.  r )  .+  (
( l ( .r
`  D ) ( G `  u ) )  .x.  Z ) )  .+  ( s 
.+  ( ( G `
 v )  .x.  Z ) ) ) )
4312, 25, 27, 26lmodvscl 17727 . . . . . . 7  |-  ( ( W  e.  LMod  /\  l  e.  K  /\  r  e.  V )  ->  (
l  .x.  r )  e.  V )
448, 9, 10, 43syl3anc 1226 . . . . . 6  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )
)  ->  ( l  .x.  r )  e.  V
)
4525, 26, 37lmodmcl 17722 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  l  e.  K  /\  ( G `  u )  e.  K )  ->  (
l ( .r `  D ) ( G `
 u ) )  e.  K )
468, 9, 31, 45syl3anc 1226 . . . . . . 7  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )
)  ->  ( l
( .r `  D
) ( G `  u ) )  e.  K )
4712, 25, 27, 26lmodvscl 17727 . . . . . . 7  |-  ( ( W  e.  LMod  /\  (
l ( .r `  D ) ( G `
 u ) )  e.  K  /\  Z  e.  V )  ->  (
( l ( .r
`  D ) ( G `  u ) )  .x.  Z )  e.  V )
488, 46, 32, 47syl3anc 1226 . . . . . 6  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )
)  ->  ( (
l ( .r `  D ) ( G `
 u ) ) 
.x.  Z )  e.  V )
49 simpr3 1002 . . . . . 6  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )
)  ->  s  e.  V )
50 simpr1 1000 . . . . . . . 8  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )
)  ->  v  e.  V )
516adantr 463 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  V )  ->  W  e.  LVec )
5218adantr 463 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  V )  ->  U  e.  H )
5320adantr 463 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  V )  ->  Z  e.  V )
54 simpr 459 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  V )  ->  v  e.  V )
5523adantr 463 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  V )  ->  ( U  .(+)  ( N `  { Z } ) )  =  V )
5612, 13, 14, 15, 16, 51, 52, 53, 54, 55, 25, 26, 27, 28, 29lshpkrlem2 35252 . . . . . . . 8  |-  ( (
ph  /\  v  e.  V )  ->  ( G `  v )  e.  K )
575, 50, 56syl2anc 659 . . . . . . 7  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )
)  ->  ( G `  v )  e.  K
)
5812, 25, 27, 26lmodvscl 17727 . . . . . . 7  |-  ( ( W  e.  LMod  /\  ( G `  v )  e.  K  /\  Z  e.  V )  ->  (
( G `  v
)  .x.  Z )  e.  V )
598, 57, 32, 58syl3anc 1226 . . . . . 6  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )
)  ->  ( ( G `  v )  .x.  Z )  e.  V
)
6012, 13lmod4 17758 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
( l  .x.  r
)  e.  V  /\  ( ( l ( .r `  D ) ( G `  u
) )  .x.  Z
)  e.  V )  /\  ( s  e.  V  /\  ( ( G `  v ) 
.x.  Z )  e.  V ) )  -> 
( ( ( l 
.x.  r )  .+  ( ( l ( .r `  D ) ( G `  u
) )  .x.  Z
) )  .+  (
s  .+  ( ( G `  v )  .x.  Z ) ) )  =  ( ( ( l  .x.  r ) 
.+  s )  .+  ( ( ( l ( .r `  D
) ( G `  u ) )  .x.  Z )  .+  (
( G `  v
)  .x.  Z )
) ) )
618, 44, 48, 49, 59, 60syl122anc 1235 . . . . 5  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )
)  ->  ( (
( l  .x.  r
)  .+  ( (
l ( .r `  D ) ( G `
 u ) ) 
.x.  Z ) ) 
.+  ( s  .+  ( ( G `  v )  .x.  Z
) ) )  =  ( ( ( l 
.x.  r )  .+  s )  .+  (
( ( l ( .r `  D ) ( G `  u
) )  .x.  Z
)  .+  ( ( G `  v )  .x.  Z ) ) ) )
62 eqid 2454 . . . . . . . 8  |-  ( +g  `  D )  =  ( +g  `  D )
6312, 13, 25, 27, 26, 62lmodvsdir 17734 . . . . . . 7  |-  ( ( W  e.  LMod  /\  (
( l ( .r
`  D ) ( G `  u ) )  e.  K  /\  ( G `  v )  e.  K  /\  Z  e.  V ) )  -> 
( ( ( l ( .r `  D
) ( G `  u ) ) ( +g  `  D ) ( G `  v
) )  .x.  Z
)  =  ( ( ( l ( .r
`  D ) ( G `  u ) )  .x.  Z ) 
.+  ( ( G `
 v )  .x.  Z ) ) )
648, 46, 57, 32, 63syl13anc 1228 . . . . . 6  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )
)  ->  ( (
( l ( .r
`  D ) ( G `  u ) ) ( +g  `  D
) ( G `  v ) )  .x.  Z )  =  ( ( ( l ( .r `  D ) ( G `  u
) )  .x.  Z
)  .+  ( ( G `  v )  .x.  Z ) ) )
6564oveq2d 6286 . . . . 5  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )
)  ->  ( (
( l  .x.  r
)  .+  s )  .+  ( ( ( l ( .r `  D
) ( G `  u ) ) ( +g  `  D ) ( G `  v
) )  .x.  Z
) )  =  ( ( ( l  .x.  r )  .+  s
)  .+  ( (
( l ( .r
`  D ) ( G `  u ) )  .x.  Z ) 
.+  ( ( G `
 v )  .x.  Z ) ) ) )
6661, 65eqtr4d 2498 . . . 4  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )
)  ->  ( (
( l  .x.  r
)  .+  ( (
l ( .r `  D ) ( G `
 u ) ) 
.x.  Z ) ) 
.+  ( s  .+  ( ( G `  v )  .x.  Z
) ) )  =  ( ( ( l 
.x.  r )  .+  s )  .+  (
( ( l ( .r `  D ) ( G `  u
) ) ( +g  `  D ) ( G `
 v ) ) 
.x.  Z ) ) )
6742, 66eqtrd 2495 . . 3  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )
)  ->  ( (
l  .x.  ( r  .+  ( ( G `  u )  .x.  Z
) ) )  .+  ( s  .+  (
( G `  v
)  .x.  Z )
) )  =  ( ( ( l  .x.  r )  .+  s
)  .+  ( (
( l ( .r
`  D ) ( G `  u ) ) ( +g  `  D
) ( G `  v ) )  .x.  Z ) ) )
68673adant3 1014 . 2  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )  /\  ( u  =  ( r  .+  ( ( G `  u ) 
.x.  Z ) )  /\  v  =  ( s  .+  ( ( G `  v ) 
.x.  Z ) ) ) )  ->  (
( l  .x.  (
r  .+  ( ( G `  u )  .x.  Z ) ) ) 
.+  ( s  .+  ( ( G `  v )  .x.  Z
) ) )  =  ( ( ( l 
.x.  r )  .+  s )  .+  (
( ( l ( .r `  D ) ( G `  u
) ) ( +g  `  D ) ( G `
 v ) ) 
.x.  Z ) ) )
694, 68eqtrd 2495 1  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  V  /\  s  e.  V )  /\  ( u  =  ( r  .+  ( ( G `  u ) 
.x.  Z ) )  /\  v  =  ( s  .+  ( ( G `  v ) 
.x.  Z ) ) ) )  ->  (
( l  .x.  u
)  .+  v )  =  ( ( ( l  .x.  r ) 
.+  s )  .+  ( ( ( l ( .r `  D
) ( G `  u ) ) ( +g  `  D ) ( G `  v
) )  .x.  Z
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   E.wrex 2805   {csn 4016    |-> cmpt 4497   ` cfv 5570   iota_crio 6231  (class class class)co 6270   Basecbs 14719   +g cplusg 14787   .rcmulr 14788  Scalarcsca 14790   .scvsca 14791   0gc0g 14932   LSSumclsm 16856   LModclmod 17710   LSpanclspn 17815   LVecclvec 17946  LSHypclsh 35116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-tpos 6947  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-3 10591  df-ndx 14722  df-slot 14723  df-base 14724  df-sets 14725  df-ress 14726  df-plusg 14800  df-mulr 14801  df-0g 14934  df-mgm 16074  df-sgrp 16113  df-mnd 16123  df-submnd 16169  df-grp 16259  df-minusg 16260  df-sbg 16261  df-subg 16400  df-cntz 16557  df-lsm 16858  df-cmn 17002  df-abl 17003  df-mgp 17340  df-ur 17352  df-ring 17398  df-oppr 17470  df-dvdsr 17488  df-unit 17489  df-invr 17519  df-drng 17596  df-lmod 17712  df-lss 17777  df-lsp 17816  df-lvec 17947  df-lshyp 35118
This theorem is referenced by:  lshpkrlem5  35255
  Copyright terms: Public domain W3C validator