Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpcmp Structured version   Unicode version

Theorem lshpcmp 34453
Description: If two hyperplanes are comparable, they are equal. (Contributed by NM, 9-Oct-2014.)
Hypotheses
Ref Expression
lshpcmp.h  |-  H  =  (LSHyp `  W )
lshpcmp.w  |-  ( ph  ->  W  e.  LVec )
lshpcmp.t  |-  ( ph  ->  T  e.  H )
lshpcmp.u  |-  ( ph  ->  U  e.  H )
Assertion
Ref Expression
lshpcmp  |-  ( ph  ->  ( T  C_  U  <->  T  =  U ) )

Proof of Theorem lshpcmp
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 eqid 2443 . . . . 5  |-  ( Base `  W )  =  (
Base `  W )
2 lshpcmp.h . . . . 5  |-  H  =  (LSHyp `  W )
3 lshpcmp.w . . . . . 6  |-  ( ph  ->  W  e.  LVec )
4 lveclmod 17730 . . . . . 6  |-  ( W  e.  LVec  ->  W  e. 
LMod )
53, 4syl 16 . . . . 5  |-  ( ph  ->  W  e.  LMod )
6 lshpcmp.u . . . . 5  |-  ( ph  ->  U  e.  H )
71, 2, 5, 6lshpne 34447 . . . 4  |-  ( ph  ->  U  =/=  ( Base `  W ) )
8 eqid 2443 . . . . . . . 8  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
98, 2, 5, 6lshplss 34446 . . . . . . 7  |-  ( ph  ->  U  e.  ( LSubSp `  W ) )
101, 8lssss 17561 . . . . . . 7  |-  ( U  e.  ( LSubSp `  W
)  ->  U  C_  ( Base `  W ) )
119, 10syl 16 . . . . . 6  |-  ( ph  ->  U  C_  ( Base `  W ) )
12 lshpcmp.t . . . . . . . . 9  |-  ( ph  ->  T  e.  H )
13 eqid 2443 . . . . . . . . . 10  |-  ( LSpan `  W )  =  (
LSpan `  W )
14 eqid 2443 . . . . . . . . . 10  |-  ( LSSum `  W )  =  (
LSSum `  W )
151, 13, 8, 14, 2, 5islshpsm 34445 . . . . . . . . 9  |-  ( ph  ->  ( T  e.  H  <->  ( T  e.  ( LSubSp `  W )  /\  T  =/=  ( Base `  W
)  /\  E. v  e.  ( Base `  W
) ( T (
LSSum `  W ) ( ( LSpan `  W ) `  { v } ) )  =  ( Base `  W ) ) ) )
1612, 15mpbid 210 . . . . . . . 8  |-  ( ph  ->  ( T  e.  (
LSubSp `  W )  /\  T  =/=  ( Base `  W
)  /\  E. v  e.  ( Base `  W
) ( T (
LSSum `  W ) ( ( LSpan `  W ) `  { v } ) )  =  ( Base `  W ) ) )
1716simp3d 1011 . . . . . . 7  |-  ( ph  ->  E. v  e.  (
Base `  W )
( T ( LSSum `  W ) ( (
LSpan `  W ) `  { v } ) )  =  ( Base `  W ) )
18 id 22 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( Base `  W )
)  ->  ( ph  /\  v  e.  ( Base `  W ) ) )
1918adantrr 716 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( v  e.  ( Base `  W
)  /\  ( T
( LSSum `  W )
( ( LSpan `  W
) `  { v } ) )  =  ( Base `  W
) ) )  -> 
( ph  /\  v  e.  ( Base `  W
) ) )
203adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( Base `  W )
)  ->  W  e.  LVec )
218, 2, 5, 12lshplss 34446 . . . . . . . . . . . . . 14  |-  ( ph  ->  T  e.  ( LSubSp `  W ) )
2221adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( Base `  W )
)  ->  T  e.  ( LSubSp `  W )
)
239adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( Base `  W )
)  ->  U  e.  ( LSubSp `  W )
)
24 simpr 461 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( Base `  W )
)  ->  v  e.  ( Base `  W )
)
251, 8, 13, 14, 20, 22, 23, 24lsmcv 17765 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  v  e.  ( Base `  W
) )  /\  T  C.  U  /\  U  C_  ( T ( LSSum `  W
) ( ( LSpan `  W ) `  {
v } ) ) )  ->  U  =  ( T ( LSSum `  W
) ( ( LSpan `  W ) `  {
v } ) ) )
2619, 25syl3an1 1262 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
v  e.  ( Base `  W )  /\  ( T ( LSSum `  W
) ( ( LSpan `  W ) `  {
v } ) )  =  ( Base `  W
) ) )  /\  T  C.  U  /\  U  C_  ( T ( LSSum `  W ) ( (
LSpan `  W ) `  { v } ) ) )  ->  U  =  ( T (
LSSum `  W ) ( ( LSpan `  W ) `  { v } ) ) )
27263expia 1199 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
v  e.  ( Base `  W )  /\  ( T ( LSSum `  W
) ( ( LSpan `  W ) `  {
v } ) )  =  ( Base `  W
) ) )  /\  T  C.  U )  -> 
( U  C_  ( T ( LSSum `  W
) ( ( LSpan `  W ) `  {
v } ) )  ->  U  =  ( T ( LSSum `  W
) ( ( LSpan `  W ) `  {
v } ) ) ) )
28 simplrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
v  e.  ( Base `  W )  /\  ( T ( LSSum `  W
) ( ( LSpan `  W ) `  {
v } ) )  =  ( Base `  W
) ) )  /\  T  C.  U )  -> 
( T ( LSSum `  W ) ( (
LSpan `  W ) `  { v } ) )  =  ( Base `  W ) )
2928sseq2d 3517 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
v  e.  ( Base `  W )  /\  ( T ( LSSum `  W
) ( ( LSpan `  W ) `  {
v } ) )  =  ( Base `  W
) ) )  /\  T  C.  U )  -> 
( U  C_  ( T ( LSSum `  W
) ( ( LSpan `  W ) `  {
v } ) )  <-> 
U  C_  ( Base `  W ) ) )
3028eqeq2d 2457 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
v  e.  ( Base `  W )  /\  ( T ( LSSum `  W
) ( ( LSpan `  W ) `  {
v } ) )  =  ( Base `  W
) ) )  /\  T  C.  U )  -> 
( U  =  ( T ( LSSum `  W
) ( ( LSpan `  W ) `  {
v } ) )  <-> 
U  =  ( Base `  W ) ) )
3127, 29, 303imtr3d 267 . . . . . . . . 9  |-  ( ( ( ph  /\  (
v  e.  ( Base `  W )  /\  ( T ( LSSum `  W
) ( ( LSpan `  W ) `  {
v } ) )  =  ( Base `  W
) ) )  /\  T  C.  U )  -> 
( U  C_  ( Base `  W )  ->  U  =  ( Base `  W ) ) )
3231exp42 611 . . . . . . . 8  |-  ( ph  ->  ( v  e.  (
Base `  W )  ->  ( ( T (
LSSum `  W ) ( ( LSpan `  W ) `  { v } ) )  =  ( Base `  W )  ->  ( T  C.  U  ->  ( U  C_  ( Base `  W
)  ->  U  =  ( Base `  W )
) ) ) ) )
3332rexlimdv 2933 . . . . . . 7  |-  ( ph  ->  ( E. v  e.  ( Base `  W
) ( T (
LSSum `  W ) ( ( LSpan `  W ) `  { v } ) )  =  ( Base `  W )  ->  ( T  C.  U  ->  ( U  C_  ( Base `  W
)  ->  U  =  ( Base `  W )
) ) ) )
3417, 33mpd 15 . . . . . 6  |-  ( ph  ->  ( T  C.  U  ->  ( U  C_  ( Base `  W )  ->  U  =  ( Base `  W ) ) ) )
3511, 34mpid 41 . . . . 5  |-  ( ph  ->  ( T  C.  U  ->  U  =  ( Base `  W ) ) )
3635necon3ad 2653 . . . 4  |-  ( ph  ->  ( U  =/=  ( Base `  W )  ->  -.  T  C.  U ) )
377, 36mpd 15 . . 3  |-  ( ph  ->  -.  T  C.  U
)
38 df-pss 3477 . . . . 5  |-  ( T 
C.  U  <->  ( T  C_  U  /\  T  =/= 
U ) )
3938simplbi2 625 . . . 4  |-  ( T 
C_  U  ->  ( T  =/=  U  ->  T  C.  U ) )
4039necon1bd 2661 . . 3  |-  ( T 
C_  U  ->  ( -.  T  C.  U  ->  T  =  U )
)
4137, 40syl5com 30 . 2  |-  ( ph  ->  ( T  C_  U  ->  T  =  U ) )
42 eqimss 3541 . 2  |-  ( T  =  U  ->  T  C_  U )
4341, 42impbid1 203 1  |-  ( ph  ->  ( T  C_  U  <->  T  =  U ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804    =/= wne 2638   E.wrex 2794    C_ wss 3461    C. wpss 3462   {csn 4014   ` cfv 5578  (class class class)co 6281   Basecbs 14613   LSSumclsm 16632   LModclmod 17490   LSubSpclss 17556   LSpanclspn 17595   LVecclvec 17726  LSHypclsh 34440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-tpos 6957  df-recs 7044  df-rdg 7078  df-er 7313  df-en 7519  df-dom 7520  df-sdom 7521  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10544  df-2 10601  df-3 10602  df-ndx 14616  df-slot 14617  df-base 14618  df-sets 14619  df-ress 14620  df-plusg 14691  df-mulr 14692  df-0g 14820  df-mgm 15850  df-sgrp 15889  df-mnd 15899  df-submnd 15945  df-grp 16035  df-minusg 16036  df-sbg 16037  df-subg 16176  df-cntz 16333  df-lsm 16634  df-cmn 16778  df-abl 16779  df-mgp 17120  df-ur 17132  df-ring 17178  df-oppr 17250  df-dvdsr 17268  df-unit 17269  df-invr 17299  df-drng 17376  df-lmod 17492  df-lss 17557  df-lsp 17596  df-lvec 17727  df-lshyp 34442
This theorem is referenced by:  lshpinN  34454  lfl1dim  34586  lfl1dim2N  34587  lkrpssN  34628  dochlkr  36852  dochsatshpb  36919  lcfl9a  36972  lclkrlem2e  36978  lclkrlem2g  36980  lclkrlem2s  36992  lcfrlem25  37034  lcfrlem35  37044  hdmaplkr  37383
  Copyright terms: Public domain W3C validator