Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatlspsn Structured version   Unicode version

Theorem lsatlspsn 32636
Description: The span of a non-zero singleton is an atom. (Contributed by NM, 16-Jan-2015.)
Hypotheses
Ref Expression
lsatset.v  |-  V  =  ( Base `  W
)
lsatset.n  |-  N  =  ( LSpan `  W )
lsatset.z  |-  .0.  =  ( 0g `  W )
lsatset.a  |-  A  =  (LSAtoms `  W )
lsatlspsn.w  |-  ( ph  ->  W  e.  LMod )
lsatlspsn.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
Assertion
Ref Expression
lsatlspsn  |-  ( ph  ->  ( N `  { X } )  e.  A
)

Proof of Theorem lsatlspsn
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 lsatlspsn.x . . 3  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
2 eqid 2442 . . 3  |-  ( N `
 { X }
)  =  ( N `
 { X }
)
3 sneq 3886 . . . . . 6  |-  ( v  =  X  ->  { v }  =  { X } )
43fveq2d 5694 . . . . 5  |-  ( v  =  X  ->  ( N `  { v } )  =  ( N `  { X } ) )
54eqeq2d 2453 . . . 4  |-  ( v  =  X  ->  (
( N `  { X } )  =  ( N `  { v } )  <->  ( N `  { X } )  =  ( N `  { X } ) ) )
65rspcev 3072 . . 3  |-  ( ( X  e.  ( V 
\  {  .0.  }
)  /\  ( N `  { X } )  =  ( N `  { X } ) )  ->  E. v  e.  ( V  \  {  .0.  } ) ( N `  { X } )  =  ( N `  {
v } ) )
71, 2, 6sylancl 662 . 2  |-  ( ph  ->  E. v  e.  ( V  \  {  .0.  } ) ( N `  { X } )  =  ( N `  {
v } ) )
8 lsatlspsn.w . . 3  |-  ( ph  ->  W  e.  LMod )
9 lsatset.v . . . 4  |-  V  =  ( Base `  W
)
10 lsatset.n . . . 4  |-  N  =  ( LSpan `  W )
11 lsatset.z . . . 4  |-  .0.  =  ( 0g `  W )
12 lsatset.a . . . 4  |-  A  =  (LSAtoms `  W )
139, 10, 11, 12islsat 32634 . . 3  |-  ( W  e.  LMod  ->  ( ( N `  { X } )  e.  A  <->  E. v  e.  ( V 
\  {  .0.  }
) ( N `  { X } )  =  ( N `  {
v } ) ) )
148, 13syl 16 . 2  |-  ( ph  ->  ( ( N `  { X } )  e.  A  <->  E. v  e.  ( V  \  {  .0.  } ) ( N `  { X } )  =  ( N `  {
v } ) ) )
157, 14mpbird 232 1  |-  ( ph  ->  ( N `  { X } )  e.  A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1369    e. wcel 1756   E.wrex 2715    \ cdif 3324   {csn 3876   ` cfv 5417   Basecbs 14173   0gc0g 14377   LModclmod 16947   LSpanclspn 17051  LSAtomsclsa 32617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-rab 2723  df-v 2973  df-sbc 3186  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-op 3883  df-uni 4091  df-br 4292  df-opab 4350  df-mpt 4351  df-id 4635  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-fv 5425  df-lsatoms 32619
This theorem is referenced by:  lsatspn0  32643  dvh4dimlem  35086  dochsnshp  35096  lclkrlem2a  35150  lclkrlem2c  35152  lclkrlem2e  35154  lcfrlem20  35205  mapdrvallem2  35288  mapdpglem20  35334  mapdpglem30a  35338  mapdpglem30b  35339  hdmaprnlem3eN  35504  hdmaprnlem16N  35508
  Copyright terms: Public domain W3C validator