Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnri1 Structured version   Unicode version

Theorem lplnri1 33043
Description: Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012.)
Hypotheses
Ref Expression
lplnri1.j  |-  .\/  =  ( join `  K )
lplnri1.a  |-  A  =  ( Atoms `  K )
lplnri1.p  |-  P  =  ( LPlanes `  K )
lplnri1.y  |-  Y  =  ( ( Q  .\/  R )  .\/  S )
Assertion
Ref Expression
lplnri1  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  Y  e.  P )  ->  Q  =/=  R )

Proof of Theorem lplnri1
StepHypRef Expression
1 eqid 2423 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
2 lplnri1.j . . . 4  |-  .\/  =  ( join `  K )
3 lplnri1.a . . . 4  |-  A  =  ( Atoms `  K )
4 lplnri1.p . . . 4  |-  P  =  ( LPlanes `  K )
5 lplnri1.y . . . 4  |-  Y  =  ( ( Q  .\/  R )  .\/  S )
61, 2, 3, 4, 5islpln2ah 33039 . . 3  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
) )  ->  ( Y  e.  P  <->  ( Q  =/=  R  /\  -.  S
( le `  K
) ( Q  .\/  R ) ) ) )
76biimp3a 1365 . 2  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  Y  e.  P )  ->  ( Q  =/=  R  /\  -.  S ( le `  K ) ( Q 
.\/  R ) ) )
87simpld 461 1  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  Y  e.  P )  ->  Q  =/=  R )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 371    /\ w3a 983    = wceq 1438    e. wcel 1869    =/= wne 2619   class class class wbr 4421   ` cfv 5599  (class class class)co 6303   lecple 15190   joincjn 16182   Atomscatm 32754   HLchlt 32841   LPlanesclpl 32982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-ral 2781  df-rex 2782  df-reu 2783  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-op 4004  df-uni 4218  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-id 4766  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-riota 6265  df-ov 6306  df-oprab 6307  df-preset 16166  df-poset 16184  df-plt 16197  df-lub 16213  df-glb 16214  df-join 16215  df-meet 16216  df-p0 16278  df-lat 16285  df-clat 16347  df-oposet 32667  df-ol 32669  df-oml 32670  df-covers 32757  df-ats 32758  df-atl 32789  df-cvlat 32813  df-hlat 32842  df-llines 32988  df-lplanes 32989
This theorem is referenced by:  dalem1  33149  dalemdea  33152
  Copyright terms: Public domain W3C validator