Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplni2 Unicode version

Theorem lplni2 30019
Description: The join of 3 different atoms is a lattice plane. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
lplni2.l  |-  .<_  =  ( le `  K )
lplni2.j  |-  .\/  =  ( join `  K )
lplni2.a  |-  A  =  ( Atoms `  K )
lplni2.p  |-  P  =  ( LPlanes `  K )
Assertion
Ref Expression
lplni2  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  -> 
( ( Q  .\/  R )  .\/  S )  e.  P )

Proof of Theorem lplni2
Dummy variables  r 
q  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 958 . . 3  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  -> 
( Q  e.  A  /\  R  e.  A  /\  S  e.  A
) )
2 simp3l 985 . . 3  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  Q  =/=  R )
3 simp3r 986 . . 3  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  -.  S  .<_  ( Q 
.\/  R ) )
4 eqidd 2405 . . 3  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  -> 
( ( Q  .\/  R )  .\/  S )  =  ( ( Q 
.\/  R )  .\/  S ) )
5 neeq1 2575 . . . . 5  |-  ( q  =  Q  ->  (
q  =/=  r  <->  Q  =/=  r ) )
6 oveq1 6047 . . . . . . 7  |-  ( q  =  Q  ->  (
q  .\/  r )  =  ( Q  .\/  r ) )
76breq2d 4184 . . . . . 6  |-  ( q  =  Q  ->  (
s  .<_  ( q  .\/  r )  <->  s  .<_  ( Q  .\/  r ) ) )
87notbid 286 . . . . 5  |-  ( q  =  Q  ->  ( -.  s  .<_  ( q 
.\/  r )  <->  -.  s  .<_  ( Q  .\/  r
) ) )
96oveq1d 6055 . . . . . 6  |-  ( q  =  Q  ->  (
( q  .\/  r
)  .\/  s )  =  ( ( Q 
.\/  r )  .\/  s ) )
109eqeq2d 2415 . . . . 5  |-  ( q  =  Q  ->  (
( ( Q  .\/  R )  .\/  S )  =  ( ( q 
.\/  r )  .\/  s )  <->  ( ( Q  .\/  R )  .\/  S )  =  ( ( Q  .\/  r ) 
.\/  s ) ) )
115, 8, 103anbi123d 1254 . . . 4  |-  ( q  =  Q  ->  (
( q  =/=  r  /\  -.  s  .<_  ( q 
.\/  r )  /\  ( ( Q  .\/  R )  .\/  S )  =  ( ( q 
.\/  r )  .\/  s ) )  <->  ( Q  =/=  r  /\  -.  s  .<_  ( Q  .\/  r
)  /\  ( ( Q  .\/  R )  .\/  S )  =  ( ( Q  .\/  r ) 
.\/  s ) ) ) )
12 neeq2 2576 . . . . 5  |-  ( r  =  R  ->  ( Q  =/=  r  <->  Q  =/=  R ) )
13 oveq2 6048 . . . . . . 7  |-  ( r  =  R  ->  ( Q  .\/  r )  =  ( Q  .\/  R
) )
1413breq2d 4184 . . . . . 6  |-  ( r  =  R  ->  (
s  .<_  ( Q  .\/  r )  <->  s  .<_  ( Q  .\/  R ) ) )
1514notbid 286 . . . . 5  |-  ( r  =  R  ->  ( -.  s  .<_  ( Q 
.\/  r )  <->  -.  s  .<_  ( Q  .\/  R
) ) )
1613oveq1d 6055 . . . . . 6  |-  ( r  =  R  ->  (
( Q  .\/  r
)  .\/  s )  =  ( ( Q 
.\/  R )  .\/  s ) )
1716eqeq2d 2415 . . . . 5  |-  ( r  =  R  ->  (
( ( Q  .\/  R )  .\/  S )  =  ( ( Q 
.\/  r )  .\/  s )  <->  ( ( Q  .\/  R )  .\/  S )  =  ( ( Q  .\/  R ) 
.\/  s ) ) )
1812, 15, 173anbi123d 1254 . . . 4  |-  ( r  =  R  ->  (
( Q  =/=  r  /\  -.  s  .<_  ( Q 
.\/  r )  /\  ( ( Q  .\/  R )  .\/  S )  =  ( ( Q 
.\/  r )  .\/  s ) )  <->  ( Q  =/=  R  /\  -.  s  .<_  ( Q  .\/  R
)  /\  ( ( Q  .\/  R )  .\/  S )  =  ( ( Q  .\/  R ) 
.\/  s ) ) ) )
19 breq1 4175 . . . . . 6  |-  ( s  =  S  ->  (
s  .<_  ( Q  .\/  R )  <->  S  .<_  ( Q 
.\/  R ) ) )
2019notbid 286 . . . . 5  |-  ( s  =  S  ->  ( -.  s  .<_  ( Q 
.\/  R )  <->  -.  S  .<_  ( Q  .\/  R
) ) )
21 oveq2 6048 . . . . . 6  |-  ( s  =  S  ->  (
( Q  .\/  R
)  .\/  s )  =  ( ( Q 
.\/  R )  .\/  S ) )
2221eqeq2d 2415 . . . . 5  |-  ( s  =  S  ->  (
( ( Q  .\/  R )  .\/  S )  =  ( ( Q 
.\/  R )  .\/  s )  <->  ( ( Q  .\/  R )  .\/  S )  =  ( ( Q  .\/  R ) 
.\/  S ) ) )
2320, 223anbi23d 1257 . . . 4  |-  ( s  =  S  ->  (
( Q  =/=  R  /\  -.  s  .<_  ( Q 
.\/  R )  /\  ( ( Q  .\/  R )  .\/  S )  =  ( ( Q 
.\/  R )  .\/  s ) )  <->  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
)  /\  ( ( Q  .\/  R )  .\/  S )  =  ( ( Q  .\/  R ) 
.\/  S ) ) ) )
2411, 18, 23rspc3ev 3022 . . 3  |-  ( ( ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
)  /\  ( ( Q  .\/  R )  .\/  S )  =  ( ( Q  .\/  R ) 
.\/  S ) ) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  ( ( Q  .\/  R )  .\/  S )  =  ( ( q  .\/  r ) 
.\/  s ) ) )
251, 2, 3, 4, 24syl13anc 1186 . 2  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( q  =/=  r  /\  -.  s  .<_  ( q 
.\/  r )  /\  ( ( Q  .\/  R )  .\/  S )  =  ( ( q 
.\/  r )  .\/  s ) ) )
26 simp1 957 . . 3  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  K  e.  HL )
27 hllat 29846 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
28273ad2ant1 978 . . . 4  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  K  e.  Lat )
29 simp21 990 . . . . 5  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  Q  e.  A )
30 simp22 991 . . . . 5  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  R  e.  A )
31 eqid 2404 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
32 lplni2.j . . . . . 6  |-  .\/  =  ( join `  K )
33 lplni2.a . . . . . 6  |-  A  =  ( Atoms `  K )
3431, 32, 33hlatjcl 29849 . . . . 5  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  R  e.  A )  ->  ( Q  .\/  R
)  e.  ( Base `  K ) )
3526, 29, 30, 34syl3anc 1184 . . . 4  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  -> 
( Q  .\/  R
)  e.  ( Base `  K ) )
36 simp23 992 . . . . 5  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  S  e.  A )
3731, 33atbase 29772 . . . . 5  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
3836, 37syl 16 . . . 4  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  S  e.  ( Base `  K ) )
3931, 32latjcl 14434 . . . 4  |-  ( ( K  e.  Lat  /\  ( Q  .\/  R )  e.  ( Base `  K
)  /\  S  e.  ( Base `  K )
)  ->  ( ( Q  .\/  R )  .\/  S )  e.  ( Base `  K ) )
4028, 35, 38, 39syl3anc 1184 . . 3  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  -> 
( ( Q  .\/  R )  .\/  S )  e.  ( Base `  K
) )
41 lplni2.l . . . 4  |-  .<_  =  ( le `  K )
42 lplni2.p . . . 4  |-  P  =  ( LPlanes `  K )
4331, 41, 32, 33, 42islpln5 30017 . . 3  |-  ( ( K  e.  HL  /\  ( ( Q  .\/  R )  .\/  S )  e.  ( Base `  K
) )  ->  (
( ( Q  .\/  R )  .\/  S )  e.  P  <->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  ( ( Q  .\/  R )  .\/  S )  =  ( ( q  .\/  r ) 
.\/  s ) ) ) )
4426, 40, 43syl2anc 643 . 2  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  -> 
( ( ( Q 
.\/  R )  .\/  S )  e.  P  <->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  ( ( Q  .\/  R )  .\/  S )  =  ( ( q  .\/  r ) 
.\/  s ) ) ) )
4525, 44mpbird 224 1  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  -> 
( ( Q  .\/  R )  .\/  S )  e.  P )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   E.wrex 2667   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   Basecbs 13424   lecple 13491   joincjn 14356   Latclat 14429   Atomscatm 29746   HLchlt 29833   LPlanesclpl 29974
This theorem is referenced by:  islpln2a  30030  2llnjaN  30048  lvolnle3at  30064  dalem42  30196  cdleme16aN  30741
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-lat 14430  df-clat 14492  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-llines 29980  df-lplanes 29981
  Copyright terms: Public domain W3C validator