Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplncvrlvol2 Structured version   Unicode version

Theorem lplncvrlvol2 35755
Description: A lattice line under a lattice plane is covered by it. (Contributed by NM, 12-Jul-2012.)
Hypotheses
Ref Expression
lplncvrlvol2.l  |-  .<_  =  ( le `  K )
lplncvrlvol2.c  |-  C  =  (  <o  `  K )
lplncvrlvol2.p  |-  P  =  ( LPlanes `  K )
lplncvrlvol2.v  |-  V  =  ( LVols `  K )
Assertion
Ref Expression
lplncvrlvol2  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  V )  /\  X  .<_  Y )  ->  X C Y )

Proof of Theorem lplncvrlvol2
Dummy variables  q  p  r  s  t  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 459 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  V )  /\  X  .<_  Y )  ->  X  .<_  Y )
2 simpl1 997 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  V )  /\  X  .<_  Y )  ->  K  e.  HL )
3 simpl3 999 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  V )  /\  X  .<_  Y )  ->  Y  e.  V
)
4 lplncvrlvol2.p . . . . . 6  |-  P  =  ( LPlanes `  K )
5 lplncvrlvol2.v . . . . . 6  |-  V  =  ( LVols `  K )
64, 5lvolnelpln 35730 . . . . 5  |-  ( ( K  e.  HL  /\  Y  e.  V )  ->  -.  Y  e.  P
)
72, 3, 6syl2anc 659 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  V )  /\  X  .<_  Y )  ->  -.  Y  e.  P )
8 simpl2 998 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  V )  /\  X  .<_  Y )  ->  X  e.  P
)
9 eleq1 2526 . . . . . 6  |-  ( X  =  Y  ->  ( X  e.  P  <->  Y  e.  P ) )
108, 9syl5ibcom 220 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  V )  /\  X  .<_  Y )  ->  ( X  =  Y  ->  Y  e.  P ) )
1110necon3bd 2666 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  V )  /\  X  .<_  Y )  ->  ( -.  Y  e.  P  ->  X  =/= 
Y ) )
127, 11mpd 15 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  V )  /\  X  .<_  Y )  ->  X  =/=  Y
)
13 lplncvrlvol2.l . . . . 5  |-  .<_  =  ( le `  K )
14 eqid 2454 . . . . 5  |-  ( lt
`  K )  =  ( lt `  K
)
1513, 14pltval 15792 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  V )  ->  ( X ( lt
`  K ) Y  <-> 
( X  .<_  Y  /\  X  =/=  Y ) ) )
1615adantr 463 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  V )  /\  X  .<_  Y )  ->  ( X ( lt `  K ) Y  <->  ( X  .<_  Y  /\  X  =/=  Y
) ) )
171, 12, 16mpbir2and 920 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  V )  /\  X  .<_  Y )  ->  X ( lt
`  K ) Y )
18 simpl1 997 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  V )  /\  X ( lt `  K ) Y )  ->  K  e.  HL )
19 simpl2 998 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  V )  /\  X ( lt `  K ) Y )  ->  X  e.  P
)
20 eqid 2454 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
2120, 4lplnbase 35674 . . . . 5  |-  ( X  e.  P  ->  X  e.  ( Base `  K
) )
2219, 21syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  V )  /\  X ( lt `  K ) Y )  ->  X  e.  (
Base `  K )
)
23 simpl3 999 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  V )  /\  X ( lt `  K ) Y )  ->  Y  e.  V
)
2420, 5lvolbase 35718 . . . . 5  |-  ( Y  e.  V  ->  Y  e.  ( Base `  K
) )
2523, 24syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  V )  /\  X ( lt `  K ) Y )  ->  Y  e.  (
Base `  K )
)
26 simpr 459 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  V )  /\  X ( lt `  K ) Y )  ->  X ( lt
`  K ) Y )
27 eqid 2454 . . . . 5  |-  ( join `  K )  =  (
join `  K )
28 lplncvrlvol2.c . . . . 5  |-  C  =  (  <o  `  K )
29 eqid 2454 . . . . 5  |-  ( Atoms `  K )  =  (
Atoms `  K )
3020, 13, 14, 27, 28, 29hlrelat3 35552 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  /\  X
( lt `  K
) Y )  ->  E. s  e.  ( Atoms `  K ) ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) )
3118, 22, 25, 26, 30syl31anc 1229 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  V )  /\  X ( lt `  K ) Y )  ->  E. s  e.  (
Atoms `  K ) ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) )
3220, 13, 27, 29, 5islvol2 35720 . . . . . . . 8  |-  ( K  e.  HL  ->  ( Y  e.  V  <->  ( Y  e.  ( Base `  K
)  /\  E. t  e.  ( Atoms `  K ) E. u  e.  ( Atoms `  K ) E. v  e.  ( Atoms `  K ) E. w  e.  ( Atoms `  K )
( ( t  =/=  u  /\  -.  v  .<_  ( t ( join `  K ) u )  /\  -.  w  .<_  ( ( t ( join `  K ) u ) ( join `  K
) v ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) ) ) ) )
3332adantr 463 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  P )  ->  ( Y  e.  V  <->  ( Y  e.  ( Base `  K )  /\  E. t  e.  ( Atoms `  K ) E. u  e.  ( Atoms `  K ) E. v  e.  ( Atoms `  K ) E. w  e.  ( Atoms `  K ) ( ( t  =/=  u  /\  -.  v  .<_  ( t ( join `  K
) u )  /\  -.  w  .<_  ( ( t ( join `  K
) u ) (
join `  K )
v ) )  /\  Y  =  ( (
( t ( join `  K ) u ) ( join `  K
) v ) (
join `  K )
w ) ) ) ) )
34 simpr 459 . . . . . . . . . . 11  |-  ( ( ( t  =/=  u  /\  -.  v  .<_  ( t ( join `  K
) u )  /\  -.  w  .<_  ( ( t ( join `  K
) u ) (
join `  K )
v ) )  /\  Y  =  ( (
( t ( join `  K ) u ) ( join `  K
) v ) (
join `  K )
w ) )  ->  Y  =  ( (
( t ( join `  K ) u ) ( join `  K
) v ) (
join `  K )
w ) )
3520, 13, 27, 29, 4islpln2 35676 . . . . . . . . . . . . 13  |-  ( K  e.  HL  ->  ( X  e.  P  <->  ( X  e.  ( Base `  K
)  /\  E. p  e.  ( Atoms `  K ) E. q  e.  ( Atoms `  K ) E. r  e.  ( Atoms `  K ) ( p  =/=  q  /\  -.  r  .<_  ( p (
join `  K )
q )  /\  X  =  ( ( p ( join `  K
) q ) (
join `  K )
r ) ) ) ) )
36 simp3rl 1067 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  r  e.  (
Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  /\  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  /\  ( s  e.  ( Atoms `  K )  /\  ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) ) )  ->  X C ( X ( join `  K
) s ) )
37 simp3rr 1068 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  r  e.  (
Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  /\  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  /\  ( s  e.  ( Atoms `  K )  /\  ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) ) )  ->  ( X (
join `  K )
s )  .<_  Y )
38 simp133 1131 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  r  e.  (
Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  /\  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  /\  ( s  e.  ( Atoms `  K )  /\  ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) ) )  ->  X  =  ( ( p ( join `  K ) q ) ( join `  K
) r ) )
3938oveq1d 6285 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  r  e.  (
Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  /\  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  /\  ( s  e.  ( Atoms `  K )  /\  ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) ) )  ->  ( X (
join `  K )
s )  =  ( ( ( p (
join `  K )
q ) ( join `  K ) r ) ( join `  K
) s ) )
40 simp23 1029 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  r  e.  (
Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  /\  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  /\  ( s  e.  ( Atoms `  K )  /\  ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) ) )  ->  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )
4137, 39, 403brtr3d 4468 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  r  e.  (
Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  /\  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  /\  ( s  e.  ( Atoms `  K )  /\  ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) ) )  ->  ( ( ( p ( join `  K
) q ) (
join `  K )
r ) ( join `  K ) s ) 
.<_  ( ( ( t ( join `  K
) u ) (
join `  K )
v ) ( join `  K ) w ) )
42 simp11 1024 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  r  e.  (
Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  /\  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  /\  ( s  e.  ( Atoms `  K )  /\  ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) ) )  ->  ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) ) )
43 simp12 1025 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  r  e.  (
Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  /\  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  /\  ( s  e.  ( Atoms `  K )  /\  ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) ) )  ->  r  e.  (
Atoms `  K ) )
44 simp3l 1022 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  r  e.  (
Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  /\  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  /\  ( s  e.  ( Atoms `  K )  /\  ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) ) )  ->  s  e.  (
Atoms `  K ) )
45 simp21l 1111 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  r  e.  (
Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  /\  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  /\  ( s  e.  ( Atoms `  K )  /\  ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) ) )  ->  t  e.  (
Atoms `  K ) )
4643, 44, 453jca 1174 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  r  e.  (
Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  /\  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  /\  ( s  e.  ( Atoms `  K )  /\  ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) ) )  ->  ( r  e.  ( Atoms `  K )  /\  s  e.  ( Atoms `  K )  /\  t  e.  ( Atoms `  K ) ) )
47 simp21r 1112 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  r  e.  (
Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  /\  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  /\  ( s  e.  ( Atoms `  K )  /\  ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) ) )  ->  u  e.  (
Atoms `  K ) )
48 simp22l 1113 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  r  e.  (
Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  /\  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  /\  ( s  e.  ( Atoms `  K )  /\  ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) ) )  ->  v  e.  (
Atoms `  K ) )
49 simp22r 1114 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  r  e.  (
Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  /\  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  /\  ( s  e.  ( Atoms `  K )  /\  ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) ) )  ->  w  e.  (
Atoms `  K ) )
5047, 48, 493jca 1174 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  r  e.  (
Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  /\  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  /\  ( s  e.  ( Atoms `  K )  /\  ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) ) )  ->  ( u  e.  ( Atoms `  K )  /\  v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) ) )
51 simp131 1129 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  r  e.  (
Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  /\  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  /\  ( s  e.  ( Atoms `  K )  /\  ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) ) )  ->  p  =/=  q
)
52 simp132 1130 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  r  e.  (
Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  /\  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  /\  ( s  e.  ( Atoms `  K )  /\  ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) ) )  ->  -.  r  .<_  ( p ( join `  K
) q ) )
5336, 38, 393brtr3d 4468 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  r  e.  (
Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  /\  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  /\  ( s  e.  ( Atoms `  K )  /\  ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) ) )  ->  ( ( p ( join `  K
) q ) (
join `  K )
r ) C ( ( ( p (
join `  K )
q ) ( join `  K ) r ) ( join `  K
) s ) )
54 simp111 1123 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  r  e.  (
Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  /\  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  /\  ( s  e.  ( Atoms `  K )  /\  ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) ) )  ->  K  e.  HL )
55 hllat 35504 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( K  e.  HL  ->  K  e.  Lat )
5654, 55syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  r  e.  (
Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  /\  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  /\  ( s  e.  ( Atoms `  K )  /\  ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) ) )  ->  K  e.  Lat )
5720, 27, 29hlatjcl 35507 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  ->  ( p
( join `  K )
q )  e.  (
Base `  K )
)
5842, 57syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  r  e.  (
Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  /\  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  /\  ( s  e.  ( Atoms `  K )  /\  ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) ) )  ->  ( p (
join `  K )
q )  e.  (
Base `  K )
)
5920, 29atbase 35430 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( r  e.  ( Atoms `  K
)  ->  r  e.  ( Base `  K )
)
6043, 59syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  r  e.  (
Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  /\  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  /\  ( s  e.  ( Atoms `  K )  /\  ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) ) )  ->  r  e.  (
Base `  K )
)
6120, 27latjcl 15883 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( K  e.  Lat  /\  ( p ( join `  K ) q )  e.  ( Base `  K
)  /\  r  e.  ( Base `  K )
)  ->  ( (
p ( join `  K
) q ) (
join `  K )
r )  e.  (
Base `  K )
)
6256, 58, 60, 61syl3anc 1226 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  r  e.  (
Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  /\  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  /\  ( s  e.  ( Atoms `  K )  /\  ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) ) )  ->  ( ( p ( join `  K
) q ) (
join `  K )
r )  e.  (
Base `  K )
)
6320, 13, 27, 28, 29cvr1 35550 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( K  e.  HL  /\  ( ( p (
join `  K )
q ) ( join `  K ) r )  e.  ( Base `  K
)  /\  s  e.  ( Atoms `  K )
)  ->  ( -.  s  .<_  ( ( p ( join `  K
) q ) (
join `  K )
r )  <->  ( (
p ( join `  K
) q ) (
join `  K )
r ) C ( ( ( p (
join `  K )
q ) ( join `  K ) r ) ( join `  K
) s ) ) )
6454, 62, 44, 63syl3anc 1226 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  r  e.  (
Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  /\  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  /\  ( s  e.  ( Atoms `  K )  /\  ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) ) )  ->  ( -.  s  .<_  ( ( p (
join `  K )
q ) ( join `  K ) r )  <-> 
( ( p (
join `  K )
q ) ( join `  K ) r ) C ( ( ( p ( join `  K
) q ) (
join `  K )
r ) ( join `  K ) s ) ) )
6553, 64mpbird 232 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  r  e.  (
Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  /\  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  /\  ( s  e.  ( Atoms `  K )  /\  ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) ) )  ->  -.  s  .<_  ( ( p ( join `  K ) q ) ( join `  K
) r ) )
6613, 27, 294at2 35754 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  ( r  e.  ( Atoms `  K )  /\  s  e.  ( Atoms `  K )  /\  t  e.  ( Atoms `  K ) )  /\  ( u  e.  ( Atoms `  K )  /\  v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K )
) )  /\  (
p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  -.  s  .<_  ( ( p ( join `  K
) q ) (
join `  K )
r ) ) )  ->  ( ( ( ( p ( join `  K ) q ) ( join `  K
) r ) (
join `  K )
s )  .<_  ( ( ( t ( join `  K ) u ) ( join `  K
) v ) (
join `  K )
w )  <->  ( (
( p ( join `  K ) q ) ( join `  K
) r ) (
join `  K )
s )  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) ) )
6742, 46, 50, 51, 52, 65, 66syl33anc 1241 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  r  e.  (
Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  /\  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  /\  ( s  e.  ( Atoms `  K )  /\  ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) ) )  ->  ( ( ( ( p ( join `  K ) q ) ( join `  K
) r ) (
join `  K )
s )  .<_  ( ( ( t ( join `  K ) u ) ( join `  K
) v ) (
join `  K )
w )  <->  ( (
( p ( join `  K ) q ) ( join `  K
) r ) (
join `  K )
s )  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) ) )
6841, 67mpbid 210 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  r  e.  (
Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  /\  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  /\  ( s  e.  ( Atoms `  K )  /\  ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) ) )  ->  ( ( ( p ( join `  K
) q ) (
join `  K )
r ) ( join `  K ) s )  =  ( ( ( t ( join `  K
) u ) (
join `  K )
v ) ( join `  K ) w ) )
6968, 39, 403eqtr4d 2505 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  r  e.  (
Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  /\  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  /\  ( s  e.  ( Atoms `  K )  /\  ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) ) )  ->  ( X (
join `  K )
s )  =  Y )
7036, 69breqtrd 4463 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  r  e.  (
Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  /\  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  /\  ( s  e.  ( Atoms `  K )  /\  ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) ) )  ->  X C Y )
71703exp 1193 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  /\  r  e.  ( Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  ->  ( ( ( t  e.  ( Atoms `  K )  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  ->  ( ( s  e.  ( Atoms `  K
)  /\  ( X C ( X (
join `  K )
s )  /\  ( X ( join `  K
) s )  .<_  Y ) )  ->  X C Y ) ) )
7271exp4a 604 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  /\  r  e.  ( Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  ->  ( ( ( t  e.  ( Atoms `  K )  /\  u  e.  ( Atoms `  K )
)  /\  ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  ->  ( s  e.  ( Atoms `  K )  ->  ( ( X C ( X ( join `  K ) s )  /\  ( X (
join `  K )
s )  .<_  Y )  ->  X C Y ) ) ) )
73723expd 1211 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  /\  r  e.  ( Atoms `  K )  /\  ( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  ->  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  ->  ( (
v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K )
)  ->  ( Y  =  ( ( ( t ( join `  K
) u ) (
join `  K )
v ) ( join `  K ) w )  ->  ( s  e.  ( Atoms `  K )  ->  ( ( X C ( X ( join `  K ) s )  /\  ( X (
join `  K )
s )  .<_  Y )  ->  X C Y ) ) ) ) ) )
7473rexlimdv3a 2948 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  ->  ( E. r  e.  ( Atoms `  K ) ( p  =/=  q  /\  -.  r  .<_  ( p (
join `  K )
q )  /\  X  =  ( ( p ( join `  K
) q ) (
join `  K )
r ) )  -> 
( ( t  e.  ( Atoms `  K )  /\  u  e.  ( Atoms `  K ) )  ->  ( ( v  e.  ( Atoms `  K
)  /\  w  e.  ( Atoms `  K )
)  ->  ( Y  =  ( ( ( t ( join `  K
) u ) (
join `  K )
v ) ( join `  K ) w )  ->  ( s  e.  ( Atoms `  K )  ->  ( ( X C ( X ( join `  K ) s )  /\  ( X (
join `  K )
s )  .<_  Y )  ->  X C Y ) ) ) ) ) ) )
75743expib 1197 . . . . . . . . . . . . . . 15  |-  ( K  e.  HL  ->  (
( p  e.  (
Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  -> 
( E. r  e.  ( Atoms `  K )
( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) )  -> 
( ( t  e.  ( Atoms `  K )  /\  u  e.  ( Atoms `  K ) )  ->  ( ( v  e.  ( Atoms `  K
)  /\  w  e.  ( Atoms `  K )
)  ->  ( Y  =  ( ( ( t ( join `  K
) u ) (
join `  K )
v ) ( join `  K ) w )  ->  ( s  e.  ( Atoms `  K )  ->  ( ( X C ( X ( join `  K ) s )  /\  ( X (
join `  K )
s )  .<_  Y )  ->  X C Y ) ) ) ) ) ) ) )
7675rexlimdvv 2952 . . . . . . . . . . . . . 14  |-  ( K  e.  HL  ->  ( E. p  e.  ( Atoms `  K ) E. q  e.  ( Atoms `  K ) E. r  e.  ( Atoms `  K )
( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) )  -> 
( ( t  e.  ( Atoms `  K )  /\  u  e.  ( Atoms `  K ) )  ->  ( ( v  e.  ( Atoms `  K
)  /\  w  e.  ( Atoms `  K )
)  ->  ( Y  =  ( ( ( t ( join `  K
) u ) (
join `  K )
v ) ( join `  K ) w )  ->  ( s  e.  ( Atoms `  K )  ->  ( ( X C ( X ( join `  K ) s )  /\  ( X (
join `  K )
s )  .<_  Y )  ->  X C Y ) ) ) ) ) ) )
7776adantld 465 . . . . . . . . . . . . 13  |-  ( K  e.  HL  ->  (
( X  e.  (
Base `  K )  /\  E. p  e.  (
Atoms `  K ) E. q  e.  ( Atoms `  K ) E. r  e.  ( Atoms `  K )
( p  =/=  q  /\  -.  r  .<_  ( p ( join `  K
) q )  /\  X  =  ( (
p ( join `  K
) q ) (
join `  K )
r ) ) )  ->  ( ( t  e.  ( Atoms `  K
)  /\  u  e.  ( Atoms `  K )
)  ->  ( (
v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K )
)  ->  ( Y  =  ( ( ( t ( join `  K
) u ) (
join `  K )
v ) ( join `  K ) w )  ->  ( s  e.  ( Atoms `  K )  ->  ( ( X C ( X ( join `  K ) s )  /\  ( X (
join `  K )
s )  .<_  Y )  ->  X C Y ) ) ) ) ) ) )
7835, 77sylbid 215 . . . . . . . . . . . 12  |-  ( K  e.  HL  ->  ( X  e.  P  ->  ( ( t  e.  (
Atoms `  K )  /\  u  e.  ( Atoms `  K ) )  -> 
( ( v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K ) )  ->  ( Y  =  ( ( ( t ( join `  K
) u ) (
join `  K )
v ) ( join `  K ) w )  ->  ( s  e.  ( Atoms `  K )  ->  ( ( X C ( X ( join `  K ) s )  /\  ( X (
join `  K )
s )  .<_  Y )  ->  X C Y ) ) ) ) ) ) )
7978imp31 430 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  P )  /\  ( t  e.  ( Atoms `  K )  /\  u  e.  ( Atoms `  K ) ) )  ->  ( (
v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K )
)  ->  ( Y  =  ( ( ( t ( join `  K
) u ) (
join `  K )
v ) ( join `  K ) w )  ->  ( s  e.  ( Atoms `  K )  ->  ( ( X C ( X ( join `  K ) s )  /\  ( X (
join `  K )
s )  .<_  Y )  ->  X C Y ) ) ) ) )
8034, 79syl7 68 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  e.  P )  /\  ( t  e.  ( Atoms `  K )  /\  u  e.  ( Atoms `  K ) ) )  ->  ( (
v  e.  ( Atoms `  K )  /\  w  e.  ( Atoms `  K )
)  ->  ( (
( t  =/=  u  /\  -.  v  .<_  ( t ( join `  K
) u )  /\  -.  w  .<_  ( ( t ( join `  K
) u ) (
join `  K )
v ) )  /\  Y  =  ( (
( t ( join `  K ) u ) ( join `  K
) v ) (
join `  K )
w ) )  -> 
( s  e.  (
Atoms `  K )  -> 
( ( X C ( X ( join `  K ) s )  /\  ( X (
join `  K )
s )  .<_  Y )  ->  X C Y ) ) ) ) )
8180rexlimdvv 2952 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  P )  /\  ( t  e.  ( Atoms `  K )  /\  u  e.  ( Atoms `  K ) ) )  ->  ( E. v  e.  ( Atoms `  K ) E. w  e.  ( Atoms `  K )
( ( t  =/=  u  /\  -.  v  .<_  ( t ( join `  K ) u )  /\  -.  w  .<_  ( ( t ( join `  K ) u ) ( join `  K
) v ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  ->  ( s  e.  ( Atoms `  K )  ->  ( ( X C ( X ( join `  K ) s )  /\  ( X (
join `  K )
s )  .<_  Y )  ->  X C Y ) ) ) )
8281rexlimdvva 2953 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  P )  ->  ( E. t  e.  ( Atoms `  K ) E. u  e.  ( Atoms `  K ) E. v  e.  ( Atoms `  K ) E. w  e.  ( Atoms `  K )
( ( t  =/=  u  /\  -.  v  .<_  ( t ( join `  K ) u )  /\  -.  w  .<_  ( ( t ( join `  K ) u ) ( join `  K
) v ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) )  ->  ( s  e.  ( Atoms `  K )  ->  ( ( X C ( X ( join `  K ) s )  /\  ( X (
join `  K )
s )  .<_  Y )  ->  X C Y ) ) ) )
8382adantld 465 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  P )  ->  ( ( Y  e.  ( Base `  K
)  /\  E. t  e.  ( Atoms `  K ) E. u  e.  ( Atoms `  K ) E. v  e.  ( Atoms `  K ) E. w  e.  ( Atoms `  K )
( ( t  =/=  u  /\  -.  v  .<_  ( t ( join `  K ) u )  /\  -.  w  .<_  ( ( t ( join `  K ) u ) ( join `  K
) v ) )  /\  Y  =  ( ( ( t (
join `  K )
u ) ( join `  K ) v ) ( join `  K
) w ) ) )  ->  ( s  e.  ( Atoms `  K )  ->  ( ( X C ( X ( join `  K ) s )  /\  ( X (
join `  K )
s )  .<_  Y )  ->  X C Y ) ) ) )
8433, 83sylbid 215 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  P )  ->  ( Y  e.  V  ->  ( s  e.  (
Atoms `  K )  -> 
( ( X C ( X ( join `  K ) s )  /\  ( X (
join `  K )
s )  .<_  Y )  ->  X C Y ) ) ) )
85843impia 1191 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  V )  ->  ( s  e.  (
Atoms `  K )  -> 
( ( X C ( X ( join `  K ) s )  /\  ( X (
join `  K )
s )  .<_  Y )  ->  X C Y ) ) )
8685rexlimdv 2944 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  V )  ->  ( E. s  e.  ( Atoms `  K )
( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y )  ->  X C Y ) )
8786imp 427 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  V )  /\  E. s  e.  (
Atoms `  K ) ( X C ( X ( join `  K
) s )  /\  ( X ( join `  K
) s )  .<_  Y ) )  ->  X C Y )
8831, 87syldan 468 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  V )  /\  X ( lt `  K ) Y )  ->  X C Y )
8917, 88syldan 468 1  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  V )  /\  X  .<_  Y )  ->  X C Y )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823    =/= wne 2649   E.wrex 2805   class class class wbr 4439   ` cfv 5570  (class class class)co 6270   Basecbs 14719   lecple 14794   ltcplt 15772   joincjn 15775   Latclat 15877    <o ccvr 35403   Atomscatm 35404   HLchlt 35491   LPlanesclpl 35632   LVolsclvol 35633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-preset 15759  df-poset 15777  df-plt 15790  df-lub 15806  df-glb 15807  df-join 15808  df-meet 15809  df-p0 15871  df-lat 15878  df-clat 15940  df-oposet 35317  df-ol 35319  df-oml 35320  df-covers 35407  df-ats 35408  df-atl 35439  df-cvlat 35463  df-hlat 35492  df-llines 35638  df-lplanes 35639  df-lvols 35640
This theorem is referenced by:  lplncvrlvol  35756  lvolcmp  35757  2lplnm2N  35761  2lplnmj  35762
  Copyright terms: Public domain W3C validator