Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplncvrlvol Structured version   Unicode version

Theorem lplncvrlvol 33150
Description: An element covering a lattice plane is a lattice volume and vice-versa. (Contributed by NM, 15-Jul-2012.)
Hypotheses
Ref Expression
lplncvrlvol.b  |-  B  =  ( Base `  K
)
lplncvrlvol.c  |-  C  =  (  <o  `  K )
lplncvrlvol.p  |-  P  =  ( LPlanes `  K )
lplncvrlvol.v  |-  V  =  ( LVols `  K )
Assertion
Ref Expression
lplncvrlvol  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( X  e.  P  <->  Y  e.  V
) )

Proof of Theorem lplncvrlvol
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simpll1 1044 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  P )  ->  K  e.  HL )
2 simpll3 1046 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  P )  ->  Y  e.  B )
3 simpr 462 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  P )  ->  X  e.  P )
4 simplr 760 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  P )  ->  X C Y )
5 lplncvrlvol.b . . . 4  |-  B  =  ( Base `  K
)
6 lplncvrlvol.c . . . 4  |-  C  =  (  <o  `  K )
7 lplncvrlvol.p . . . 4  |-  P  =  ( LPlanes `  K )
8 lplncvrlvol.v . . . 4  |-  V  =  ( LVols `  K )
95, 6, 7, 8lvoli 33109 . . 3  |-  ( ( ( K  e.  HL  /\  Y  e.  B  /\  X  e.  P )  /\  X C Y )  ->  Y  e.  V
)
101, 2, 3, 4, 9syl31anc 1267 . 2  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  P )  ->  Y  e.  V )
11 simpll1 1044 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  K  e.  HL )
12 simpll2 1045 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  X  e.  B )
13 hllat 32898 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
1411, 13syl 17 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  K  e.  Lat )
15 simpll3 1046 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  Y  e.  B )
16 eqid 2422 . . . . . . . 8  |-  ( le
`  K )  =  ( le `  K
)
175, 16latref 16298 . . . . . . 7  |-  ( ( K  e.  Lat  /\  Y  e.  B )  ->  Y ( le `  K ) Y )
1814, 15, 17syl2anc 665 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  Y
( le `  K
) Y )
1911adantr 466 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  /\  Y  e.  ( Atoms `  K )
)  ->  K  e.  HL )
20 simplr 760 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  /\  Y  e.  ( Atoms `  K )
)  ->  Y  e.  V )
21 simpr 462 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  /\  Y  e.  ( Atoms `  K )
)  ->  Y  e.  ( Atoms `  K )
)
22 eqid 2422 . . . . . . . . 9  |-  ( Atoms `  K )  =  (
Atoms `  K )
2316, 22, 8lvolnleat 33117 . . . . . . . 8  |-  ( ( K  e.  HL  /\  Y  e.  V  /\  Y  e.  ( Atoms `  K ) )  ->  -.  Y ( le `  K ) Y )
2419, 20, 21, 23syl3anc 1264 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  /\  Y  e.  ( Atoms `  K )
)  ->  -.  Y
( le `  K
) Y )
2524ex 435 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  ( Y  e.  ( Atoms `  K )  ->  -.  Y ( le `  K ) Y ) )
2618, 25mt2d 120 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  -.  Y  e.  ( Atoms `  K ) )
27 simplr 760 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  X C Y )
28 breq1 4426 . . . . . . . 8  |-  ( X  =  ( 0. `  K )  ->  ( X C Y  <->  ( 0. `  K ) C Y ) )
2927, 28syl5ibcom 223 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  ( X  =  ( 0. `  K )  ->  ( 0. `  K ) C Y ) )
30 eqid 2422 . . . . . . . . 9  |-  ( 0.
`  K )  =  ( 0. `  K
)
315, 30, 6, 22isat2 32822 . . . . . . . 8  |-  ( ( K  e.  HL  /\  Y  e.  B )  ->  ( Y  e.  (
Atoms `  K )  <->  ( 0. `  K ) C Y ) )
3211, 15, 31syl2anc 665 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  ( Y  e.  ( Atoms `  K )  <->  ( 0. `  K ) C Y ) )
3329, 32sylibrd 237 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  ( X  =  ( 0. `  K )  ->  Y  e.  ( Atoms `  K )
) )
3433necon3bd 2632 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  ( -.  Y  e.  ( Atoms `  K )  ->  X  =/=  ( 0. `  K ) ) )
3526, 34mpd 15 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  X  =/=  ( 0. `  K
) )
36 eqid 2422 . . . . . . 7  |-  ( LLines `  K )  =  (
LLines `  K )
3736, 8lvolnelln 33123 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  e.  V )  ->  -.  Y  e.  (
LLines `  K ) )
3811, 37sylancom 671 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  -.  Y  e.  ( LLines `  K ) )
3911adantr 466 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  /\  X  e.  ( Atoms `  K )
)  ->  K  e.  HL )
4015adantr 466 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  /\  X  e.  ( Atoms `  K )
)  ->  Y  e.  B )
41 simpr 462 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  /\  X  e.  ( Atoms `  K )
)  ->  X  e.  ( Atoms `  K )
)
42 simpllr 767 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  /\  X  e.  ( Atoms `  K )
)  ->  X C Y )
435, 6, 22, 36llni 33042 . . . . . 6  |-  ( ( ( K  e.  HL  /\  Y  e.  B  /\  X  e.  ( Atoms `  K ) )  /\  X C Y )  ->  Y  e.  ( LLines `  K ) )
4439, 40, 41, 42, 43syl31anc 1267 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  /\  X  e.  ( Atoms `  K )
)  ->  Y  e.  ( LLines `  K )
)
4538, 44mtand 663 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  -.  X  e.  ( Atoms `  K ) )
467, 8lvolnelpln 33124 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  e.  V )  ->  -.  Y  e.  P
)
4711, 46sylancom 671 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  -.  Y  e.  P )
485, 6, 36, 7llncvrlpln 33092 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( X  e.  ( LLines `  K )  <->  Y  e.  P ) )
4948adantr 466 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  ( X  e.  ( LLines `  K )  <->  Y  e.  P ) )
5047, 49mtbird 302 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  -.  X  e.  ( LLines `  K ) )
515, 16, 30, 22, 36, 7lplnle 33074 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/=  ( 0. `  K
)  /\  -.  X  e.  ( Atoms `  K )  /\  -.  X  e.  (
LLines `  K ) ) )  ->  E. z  e.  P  z ( le `  K ) X )
5211, 12, 35, 45, 50, 51syl23anc 1271 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  E. z  e.  P  z ( le `  K ) X )
53 simpr3 1013 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  z ( le `  K ) X )
54 simpll1 1044 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  K  e.  HL )
55 hlop 32897 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  OP )
5654, 55syl 17 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  K  e.  OP )
57 simpr2 1012 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  z  e.  P )
585, 7lplnbase 33068 . . . . . . . . . 10  |-  ( z  e.  P  ->  z  e.  B )
5957, 58syl 17 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  z  e.  B )
60 simpll2 1045 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  X  e.  B )
61 simpll3 1046 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  Y  e.  B )
62 simpr1 1011 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  Y  e.  V )
635, 16, 6cvrle 32813 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  X ( le
`  K ) Y )
6463adantr 466 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  X ( le `  K ) Y )
65 hlpos 32900 . . . . . . . . . . . . 13  |-  ( K  e.  HL  ->  K  e.  Poset )
6654, 65syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  K  e.  Poset
)
675, 16postr 16198 . . . . . . . . . . . 12  |-  ( ( K  e.  Poset  /\  (
z  e.  B  /\  X  e.  B  /\  Y  e.  B )
)  ->  ( (
z ( le `  K ) X  /\  X ( le `  K ) Y )  ->  z ( le
`  K ) Y ) )
6866, 59, 60, 61, 67syl13anc 1266 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  ( (
z ( le `  K ) X  /\  X ( le `  K ) Y )  ->  z ( le
`  K ) Y ) )
6953, 64, 68mp2and 683 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  z ( le `  K ) Y )
7016, 6, 7, 8lplncvrlvol2 33149 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  z  e.  P  /\  Y  e.  V )  /\  z ( le `  K ) Y )  ->  z C Y )
7154, 57, 62, 69, 70syl31anc 1267 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  z C Y )
72 simplr 760 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  X C Y )
735, 16, 6cvrcmp2 32819 . . . . . . . . 9  |-  ( ( K  e.  OP  /\  ( z  e.  B  /\  X  e.  B  /\  Y  e.  B
)  /\  ( z C Y  /\  X C Y ) )  -> 
( z ( le
`  K ) X  <-> 
z  =  X ) )
7456, 59, 60, 61, 71, 72, 73syl132anc 1282 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  ( z
( le `  K
) X  <->  z  =  X ) )
7553, 74mpbid 213 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  z  =  X )
7675, 57eqeltrrd 2508 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  X  e.  P )
77763exp2 1223 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( Y  e.  V  ->  ( z  e.  P  ->  ( z ( le `  K
) X  ->  X  e.  P ) ) ) )
7877imp 430 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  (
z  e.  P  -> 
( z ( le
`  K ) X  ->  X  e.  P
) ) )
7978rexlimdv 2912 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  ( E. z  e.  P  z ( le `  K ) X  ->  X  e.  P )
)
8052, 79mpd 15 . 2  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  X  e.  P )
8110, 80impbida 840 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( X  e.  P  <->  Y  e.  V
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2614   E.wrex 2772   class class class wbr 4423   ` cfv 5601   Basecbs 15120   lecple 15196   Posetcpo 16184   0.cp0 16282   Latclat 16290   OPcops 32707    <o ccvr 32797   Atomscatm 32798   HLchlt 32885   LLinesclln 33025   LPlanesclpl 33026   LVolsclvol 33027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-reu 2778  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-preset 16172  df-poset 16190  df-plt 16203  df-lub 16219  df-glb 16220  df-join 16221  df-meet 16222  df-p0 16284  df-lat 16291  df-clat 16353  df-oposet 32711  df-ol 32713  df-oml 32714  df-covers 32801  df-ats 32802  df-atl 32833  df-cvlat 32857  df-hlat 32886  df-llines 33032  df-lplanes 33033  df-lvols 33034
This theorem is referenced by:  2lplnmj  33156
  Copyright terms: Public domain W3C validator