Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplncvrlvol Unicode version

Theorem lplncvrlvol 30098
Description: An element covering a lattice plane is a lattice volume and vice-versa. (Contributed by NM, 15-Jul-2012.)
Hypotheses
Ref Expression
lplncvrlvol.b  |-  B  =  ( Base `  K
)
lplncvrlvol.c  |-  C  =  (  <o  `  K )
lplncvrlvol.p  |-  P  =  ( LPlanes `  K )
lplncvrlvol.v  |-  V  =  ( LVols `  K )
Assertion
Ref Expression
lplncvrlvol  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( X  e.  P  <->  Y  e.  V
) )

Proof of Theorem lplncvrlvol
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simpll1 996 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  P )  ->  K  e.  HL )
2 simpll3 998 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  P )  ->  Y  e.  B )
3 simpr 448 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  P )  ->  X  e.  P )
4 simplr 732 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  P )  ->  X C Y )
5 lplncvrlvol.b . . . 4  |-  B  =  ( Base `  K
)
6 lplncvrlvol.c . . . 4  |-  C  =  (  <o  `  K )
7 lplncvrlvol.p . . . 4  |-  P  =  ( LPlanes `  K )
8 lplncvrlvol.v . . . 4  |-  V  =  ( LVols `  K )
95, 6, 7, 8lvoli 30057 . . 3  |-  ( ( ( K  e.  HL  /\  Y  e.  B  /\  X  e.  P )  /\  X C Y )  ->  Y  e.  V
)
101, 2, 3, 4, 9syl31anc 1187 . 2  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  P )  ->  Y  e.  V )
11 simpll1 996 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  K  e.  HL )
12 simpll2 997 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  X  e.  B )
13 hllat 29846 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
1411, 13syl 16 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  K  e.  Lat )
15 simpll3 998 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  Y  e.  B )
16 eqid 2404 . . . . . . . 8  |-  ( le
`  K )  =  ( le `  K
)
175, 16latref 14437 . . . . . . 7  |-  ( ( K  e.  Lat  /\  Y  e.  B )  ->  Y ( le `  K ) Y )
1814, 15, 17syl2anc 643 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  Y
( le `  K
) Y )
1911adantr 452 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  /\  Y  e.  ( Atoms `  K )
)  ->  K  e.  HL )
20 simplr 732 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  /\  Y  e.  ( Atoms `  K )
)  ->  Y  e.  V )
21 simpr 448 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  /\  Y  e.  ( Atoms `  K )
)  ->  Y  e.  ( Atoms `  K )
)
22 eqid 2404 . . . . . . . . 9  |-  ( Atoms `  K )  =  (
Atoms `  K )
2316, 22, 8lvolnleat 30065 . . . . . . . 8  |-  ( ( K  e.  HL  /\  Y  e.  V  /\  Y  e.  ( Atoms `  K ) )  ->  -.  Y ( le `  K ) Y )
2419, 20, 21, 23syl3anc 1184 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  /\  Y  e.  ( Atoms `  K )
)  ->  -.  Y
( le `  K
) Y )
2524ex 424 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  ( Y  e.  ( Atoms `  K )  ->  -.  Y ( le `  K ) Y ) )
2618, 25mt2d 111 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  -.  Y  e.  ( Atoms `  K ) )
27 simplr 732 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  X C Y )
28 breq1 4175 . . . . . . . 8  |-  ( X  =  ( 0. `  K )  ->  ( X C Y  <->  ( 0. `  K ) C Y ) )
2927, 28syl5ibcom 212 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  ( X  =  ( 0. `  K )  ->  ( 0. `  K ) C Y ) )
30 eqid 2404 . . . . . . . . 9  |-  ( 0.
`  K )  =  ( 0. `  K
)
315, 30, 6, 22isat2 29770 . . . . . . . 8  |-  ( ( K  e.  HL  /\  Y  e.  B )  ->  ( Y  e.  (
Atoms `  K )  <->  ( 0. `  K ) C Y ) )
3211, 15, 31syl2anc 643 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  ( Y  e.  ( Atoms `  K )  <->  ( 0. `  K ) C Y ) )
3329, 32sylibrd 226 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  ( X  =  ( 0. `  K )  ->  Y  e.  ( Atoms `  K )
) )
3433necon3bd 2604 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  ( -.  Y  e.  ( Atoms `  K )  ->  X  =/=  ( 0. `  K ) ) )
3526, 34mpd 15 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  X  =/=  ( 0. `  K
) )
36 eqid 2404 . . . . . . 7  |-  ( LLines `  K )  =  (
LLines `  K )
3736, 8lvolnelln 30071 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  e.  V )  ->  -.  Y  e.  (
LLines `  K ) )
3811, 37sylancom 649 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  -.  Y  e.  ( LLines `  K ) )
3911adantr 452 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  /\  X  e.  ( Atoms `  K )
)  ->  K  e.  HL )
4015adantr 452 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  /\  X  e.  ( Atoms `  K )
)  ->  Y  e.  B )
41 simpr 448 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  /\  X  e.  ( Atoms `  K )
)  ->  X  e.  ( Atoms `  K )
)
42 simpllr 736 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  /\  X  e.  ( Atoms `  K )
)  ->  X C Y )
435, 6, 22, 36llni 29990 . . . . . 6  |-  ( ( ( K  e.  HL  /\  Y  e.  B  /\  X  e.  ( Atoms `  K ) )  /\  X C Y )  ->  Y  e.  ( LLines `  K ) )
4439, 40, 41, 42, 43syl31anc 1187 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  /\  X  e.  ( Atoms `  K )
)  ->  Y  e.  ( LLines `  K )
)
4538, 44mtand 641 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  -.  X  e.  ( Atoms `  K ) )
467, 8lvolnelpln 30072 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  e.  V )  ->  -.  Y  e.  P
)
4711, 46sylancom 649 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  -.  Y  e.  P )
485, 6, 36, 7llncvrlpln 30040 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( X  e.  ( LLines `  K )  <->  Y  e.  P ) )
4948adantr 452 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  ( X  e.  ( LLines `  K )  <->  Y  e.  P ) )
5047, 49mtbird 293 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  -.  X  e.  ( LLines `  K ) )
515, 16, 30, 22, 36, 7lplnle 30022 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/=  ( 0. `  K
)  /\  -.  X  e.  ( Atoms `  K )  /\  -.  X  e.  (
LLines `  K ) ) )  ->  E. z  e.  P  z ( le `  K ) X )
5211, 12, 35, 45, 50, 51syl23anc 1191 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  E. z  e.  P  z ( le `  K ) X )
53 simpr3 965 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  z ( le `  K ) X )
54 simpll1 996 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  K  e.  HL )
55 hlop 29845 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  OP )
5654, 55syl 16 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  K  e.  OP )
57 simpr2 964 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  z  e.  P )
585, 7lplnbase 30016 . . . . . . . . . 10  |-  ( z  e.  P  ->  z  e.  B )
5957, 58syl 16 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  z  e.  B )
60 simpll2 997 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  X  e.  B )
61 simpll3 998 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  Y  e.  B )
62 simpr1 963 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  Y  e.  V )
635, 16, 6cvrle 29761 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  X ( le
`  K ) Y )
6463adantr 452 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  X ( le `  K ) Y )
65 hlpos 29848 . . . . . . . . . . . . 13  |-  ( K  e.  HL  ->  K  e.  Poset )
6654, 65syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  K  e.  Poset
)
675, 16postr 14365 . . . . . . . . . . . 12  |-  ( ( K  e.  Poset  /\  (
z  e.  B  /\  X  e.  B  /\  Y  e.  B )
)  ->  ( (
z ( le `  K ) X  /\  X ( le `  K ) Y )  ->  z ( le
`  K ) Y ) )
6866, 59, 60, 61, 67syl13anc 1186 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  ( (
z ( le `  K ) X  /\  X ( le `  K ) Y )  ->  z ( le
`  K ) Y ) )
6953, 64, 68mp2and 661 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  z ( le `  K ) Y )
7016, 6, 7, 8lplncvrlvol2 30097 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  z  e.  P  /\  Y  e.  V )  /\  z ( le `  K ) Y )  ->  z C Y )
7154, 57, 62, 69, 70syl31anc 1187 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  z C Y )
72 simplr 732 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  X C Y )
735, 16, 6cvrcmp2 29767 . . . . . . . . 9  |-  ( ( K  e.  OP  /\  ( z  e.  B  /\  X  e.  B  /\  Y  e.  B
)  /\  ( z C Y  /\  X C Y ) )  -> 
( z ( le
`  K ) X  <-> 
z  =  X ) )
7456, 59, 60, 61, 71, 72, 73syl132anc 1202 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  ( z
( le `  K
) X  <->  z  =  X ) )
7553, 74mpbid 202 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  z  =  X )
7675, 57eqeltrrd 2479 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  X  e.  P )
77763exp2 1171 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( Y  e.  V  ->  ( z  e.  P  ->  ( z ( le `  K
) X  ->  X  e.  P ) ) ) )
7877imp 419 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  (
z  e.  P  -> 
( z ( le
`  K ) X  ->  X  e.  P
) ) )
7978rexlimdv 2789 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  ( E. z  e.  P  z ( le `  K ) X  ->  X  e.  P )
)
8052, 79mpd 15 . 2  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  X  e.  P )
8110, 80impbida 806 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( X  e.  P  <->  Y  e.  V
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   E.wrex 2667   class class class wbr 4172   ` cfv 5413   Basecbs 13424   lecple 13491   Posetcpo 14352   0.cp0 14421   Latclat 14429   OPcops 29655    <o ccvr 29745   Atomscatm 29746   HLchlt 29833   LLinesclln 29973   LPlanesclpl 29974   LVolsclvol 29975
This theorem is referenced by:  2lplnmj  30104
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-lat 14430  df-clat 14492  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-llines 29980  df-lplanes 29981  df-lvols 29982
  Copyright terms: Public domain W3C validator