Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplncmp Structured version   Unicode version

Theorem lplncmp 34358
Description: If two lattice planes are comparable, they are equal. (Contributed by NM, 24-Jun-2012.)
Hypotheses
Ref Expression
lplncmp.l  |-  .<_  =  ( le `  K )
lplncmp.p  |-  P  =  ( LPlanes `  K )
Assertion
Ref Expression
lplncmp  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  ->  ( X  .<_  Y  <->  X  =  Y ) )

Proof of Theorem lplncmp
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simp2 997 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  ->  X  e.  P )
2 simp1 996 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  ->  K  e.  HL )
3 eqid 2467 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
4 lplncmp.p . . . . . . 7  |-  P  =  ( LPlanes `  K )
53, 4lplnbase 34330 . . . . . 6  |-  ( X  e.  P  ->  X  e.  ( Base `  K
) )
653ad2ant2 1018 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  ->  X  e.  ( Base `  K ) )
7 eqid 2467 . . . . . 6  |-  (  <o  `  K )  =  ( 
<o  `  K )
8 eqid 2467 . . . . . 6  |-  ( LLines `  K )  =  (
LLines `  K )
93, 7, 8, 4islpln4 34327 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  ( Base `  K ) )  -> 
( X  e.  P  <->  E. z  e.  ( LLines `  K ) z ( 
<o  `  K ) X ) )
102, 6, 9syl2anc 661 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  ->  ( X  e.  P  <->  E. z  e.  ( LLines `  K ) z ( 
<o  `  K ) X ) )
111, 10mpbid 210 . . 3  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  ->  E. z  e.  (
LLines `  K ) z (  <o  `  K ) X )
12 simpr3 1004 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  ( z  e.  (
LLines `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  ->  X  .<_  Y )
13 hlpos 34162 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  Poset )
14133ad2ant1 1017 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  ->  K  e.  Poset )
1514adantr 465 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  ( z  e.  (
LLines `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  ->  K  e.  Poset )
166adantr 465 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  ( z  e.  (
LLines `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  ->  X  e.  ( Base `  K ) )
17 simpl3 1001 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  ( z  e.  (
LLines `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  ->  Y  e.  P )
183, 4lplnbase 34330 . . . . . . . 8  |-  ( Y  e.  P  ->  Y  e.  ( Base `  K
) )
1917, 18syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  ( z  e.  (
LLines `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  ->  Y  e.  ( Base `  K ) )
20 simpr1 1002 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  ( z  e.  (
LLines `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  -> 
z  e.  ( LLines `  K ) )
213, 8llnbase 34305 . . . . . . . 8  |-  ( z  e.  ( LLines `  K
)  ->  z  e.  ( Base `  K )
)
2220, 21syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  ( z  e.  (
LLines `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  -> 
z  e.  ( Base `  K ) )
23 simpr2 1003 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  ( z  e.  (
LLines `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  -> 
z (  <o  `  K
) X )
24 simpl1 999 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  ( z  e.  (
LLines `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  ->  K  e.  HL )
25 lplncmp.l . . . . . . . . . . 11  |-  .<_  =  ( le `  K )
263, 25, 7cvrle 34075 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  z  e.  ( Base `  K )  /\  X  e.  ( Base `  K
) )  /\  z
(  <o  `  K ) X )  ->  z  .<_  X )
2724, 22, 16, 23, 26syl31anc 1231 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  ( z  e.  (
LLines `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  -> 
z  .<_  X )
283, 25postr 15436 . . . . . . . . . 10  |-  ( ( K  e.  Poset  /\  (
z  e.  ( Base `  K )  /\  X  e.  ( Base `  K
)  /\  Y  e.  ( Base `  K )
) )  ->  (
( z  .<_  X  /\  X  .<_  Y )  -> 
z  .<_  Y ) )
2915, 22, 16, 19, 28syl13anc 1230 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  ( z  e.  (
LLines `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  -> 
( ( z  .<_  X  /\  X  .<_  Y )  ->  z  .<_  Y ) )
3027, 12, 29mp2and 679 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  ( z  e.  (
LLines `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  -> 
z  .<_  Y )
3125, 7, 8, 4llncvrlpln2 34353 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  z  e.  ( LLines `  K )  /\  Y  e.  P )  /\  z  .<_  Y )  ->  z
(  <o  `  K ) Y )
3224, 20, 17, 30, 31syl31anc 1231 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  ( z  e.  (
LLines `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  -> 
z (  <o  `  K
) Y )
333, 25, 7cvrcmp 34080 . . . . . . 7  |-  ( ( K  e.  Poset  /\  ( X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
)  /\  z  e.  ( Base `  K )
)  /\  ( z
(  <o  `  K ) X  /\  z (  <o  `  K ) Y ) )  ->  ( X  .<_  Y  <->  X  =  Y
) )
3415, 16, 19, 22, 23, 32, 33syl132anc 1246 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  ( z  e.  (
LLines `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  -> 
( X  .<_  Y  <->  X  =  Y ) )
3512, 34mpbid 210 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  ( z  e.  (
LLines `  K )  /\  z (  <o  `  K
) X  /\  X  .<_  Y ) )  ->  X  =  Y )
36353exp2 1214 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  ->  ( z  e.  (
LLines `  K )  -> 
( z (  <o  `  K ) X  -> 
( X  .<_  Y  ->  X  =  Y )
) ) )
3736rexlimdv 2953 . . 3  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  ->  ( E. z  e.  ( LLines `  K )
z (  <o  `  K
) X  ->  ( X  .<_  Y  ->  X  =  Y ) ) )
3811, 37mpd 15 . 2  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  ->  ( X  .<_  Y  ->  X  =  Y )
)
393, 25posref 15434 . . . 4  |-  ( ( K  e.  Poset  /\  X  e.  ( Base `  K
) )  ->  X  .<_  X )
4014, 6, 39syl2anc 661 . . 3  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  ->  X  .<_  X )
41 breq2 4451 . . 3  |-  ( X  =  Y  ->  ( X  .<_  X  <->  X  .<_  Y ) )
4240, 41syl5ibcom 220 . 2  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  ->  ( X  =  Y  ->  X  .<_  Y ) )
4338, 42impbid 191 1  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  ->  ( X  .<_  Y  <->  X  =  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   E.wrex 2815   class class class wbr 4447   ` cfv 5586   Basecbs 14486   lecple 14558   Posetcpo 15423    <o ccvr 34059   HLchlt 34147   LLinesclln 34287   LPlanesclpl 34288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-poset 15429  df-plt 15441  df-lub 15457  df-glb 15458  df-join 15459  df-meet 15460  df-p0 15522  df-lat 15529  df-clat 15591  df-oposet 33973  df-ol 33975  df-oml 33976  df-covers 34063  df-ats 34064  df-atl 34095  df-cvlat 34119  df-hlat 34148  df-llines 34294  df-lplanes 34295
This theorem is referenced by:  lplnexllnN  34360  lplnnlt  34361  2llnjaN  34362  dalem-cly  34467  dalem44  34512
  Copyright terms: Public domain W3C validator