MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logsqvma Structured version   Unicode version

Theorem logsqvma 22917
Description: A formula for  log ^
2 ( N ) in terms of the primes. Equation 10.4.6 of [Shapiro], p. 418. (Contributed by Mario Carneiro, 13-May-2016.)
Assertion
Ref Expression
logsqvma  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( sum_ u  e.  {
x  e.  NN  |  x  ||  d }  (
(Λ `  u )  x.  (Λ `  ( d  /  u ) ) )  +  ( (Λ `  d
)  x.  ( log `  d ) ) )  =  ( ( log `  N ) ^ 2 ) )
Distinct variable group:    u, d, x, N

Proof of Theorem logsqvma
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 fzfid 11905 . . . 4  |-  ( N  e.  NN  ->  (
1 ... N )  e. 
Fin )
2 sgmss 22570 . . . 4  |-  ( N  e.  NN  ->  { x  e.  NN  |  x  ||  N }  C_  ( 1 ... N ) )
3 ssfi 7637 . . . 4  |-  ( ( ( 1 ... N
)  e.  Fin  /\  { x  e.  NN  |  x  ||  N }  C_  ( 1 ... N
) )  ->  { x  e.  NN  |  x  ||  N }  e.  Fin )
41, 2, 3syl2anc 661 . . 3  |-  ( N  e.  NN  ->  { x  e.  NN  |  x  ||  N }  e.  Fin )
5 fzfid 11905 . . . . 5  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  (
1 ... d )  e. 
Fin )
6 elrabi 3214 . . . . . . 7  |-  ( d  e.  { x  e.  NN  |  x  ||  N }  ->  d  e.  NN )
76adantl 466 . . . . . 6  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  d  e.  NN )
8 sgmss 22570 . . . . . 6  |-  ( d  e.  NN  ->  { x  e.  NN  |  x  ||  d }  C_  ( 1 ... d ) )
97, 8syl 16 . . . . 5  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  { x  e.  NN  |  x  ||  d }  C_  ( 1 ... d ) )
10 ssfi 7637 . . . . 5  |-  ( ( ( 1 ... d
)  e.  Fin  /\  { x  e.  NN  |  x  ||  d }  C_  ( 1 ... d
) )  ->  { x  e.  NN  |  x  ||  d }  e.  Fin )
115, 9, 10syl2anc 661 . . . 4  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  { x  e.  NN  |  x  ||  d }  e.  Fin )
12 elrabi 3214 . . . . . . . . 9  |-  ( u  e.  { x  e.  NN  |  x  ||  d }  ->  u  e.  NN )
1312ad2antll 728 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( d  e.  {
x  e.  NN  |  x  ||  N }  /\  u  e.  { x  e.  NN  |  x  ||  d } ) )  ->  u  e.  NN )
14 vmacl 22582 . . . . . . . 8  |-  ( u  e.  NN  ->  (Λ `  u )  e.  RR )
1513, 14syl 16 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( d  e.  {
x  e.  NN  |  x  ||  N }  /\  u  e.  { x  e.  NN  |  x  ||  d } ) )  -> 
(Λ `  u )  e.  RR )
16 breq1 4396 . . . . . . . . . . . 12  |-  ( x  =  u  ->  (
x  ||  d  <->  u  ||  d
) )
1716elrab 3217 . . . . . . . . . . 11  |-  ( u  e.  { x  e.  NN  |  x  ||  d }  <->  ( u  e.  NN  /\  u  ||  d ) )
1817simprbi 464 . . . . . . . . . 10  |-  ( u  e.  { x  e.  NN  |  x  ||  d }  ->  u  ||  d )
1918ad2antll 728 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( d  e.  {
x  e.  NN  |  x  ||  N }  /\  u  e.  { x  e.  NN  |  x  ||  d } ) )  ->  u  ||  d )
206ad2antrl 727 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( d  e.  {
x  e.  NN  |  x  ||  N }  /\  u  e.  { x  e.  NN  |  x  ||  d } ) )  -> 
d  e.  NN )
21 nndivdvds 13652 . . . . . . . . . 10  |-  ( ( d  e.  NN  /\  u  e.  NN )  ->  ( u  ||  d  <->  ( d  /  u )  e.  NN ) )
2220, 13, 21syl2anc 661 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( d  e.  {
x  e.  NN  |  x  ||  N }  /\  u  e.  { x  e.  NN  |  x  ||  d } ) )  -> 
( u  ||  d  <->  ( d  /  u )  e.  NN ) )
2319, 22mpbid 210 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( d  e.  {
x  e.  NN  |  x  ||  N }  /\  u  e.  { x  e.  NN  |  x  ||  d } ) )  -> 
( d  /  u
)  e.  NN )
24 vmacl 22582 . . . . . . . 8  |-  ( ( d  /  u )  e.  NN  ->  (Λ `  ( d  /  u
) )  e.  RR )
2523, 24syl 16 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( d  e.  {
x  e.  NN  |  x  ||  N }  /\  u  e.  { x  e.  NN  |  x  ||  d } ) )  -> 
(Λ `  ( d  /  u ) )  e.  RR )
2615, 25remulcld 9518 . . . . . 6  |-  ( ( N  e.  NN  /\  ( d  e.  {
x  e.  NN  |  x  ||  N }  /\  u  e.  { x  e.  NN  |  x  ||  d } ) )  -> 
( (Λ `  u )  x.  (Λ `  ( d  /  u ) ) )  e.  RR )
2726recnd 9516 . . . . 5  |-  ( ( N  e.  NN  /\  ( d  e.  {
x  e.  NN  |  x  ||  N }  /\  u  e.  { x  e.  NN  |  x  ||  d } ) )  -> 
( (Λ `  u )  x.  (Λ `  ( d  /  u ) ) )  e.  CC )
2827anassrs 648 . . . 4  |-  ( ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  /\  u  e.  { x  e.  NN  |  x  ||  d } )  ->  ( (Λ `  u )  x.  (Λ `  ( d  /  u
) ) )  e.  CC )
2911, 28fsumcl 13321 . . 3  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  sum_ u  e.  { x  e.  NN  |  x  ||  d }  ( (Λ `  u
)  x.  (Λ `  (
d  /  u ) ) )  e.  CC )
30 vmacl 22582 . . . . . 6  |-  ( d  e.  NN  ->  (Λ `  d )  e.  RR )
317, 30syl 16 . . . . 5  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  (Λ `  d )  e.  RR )
327nnrpd 11130 . . . . . 6  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  d  e.  RR+ )
3332relogcld 22198 . . . . 5  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  ( log `  d )  e.  RR )
3431, 33remulcld 9518 . . . 4  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  (
(Λ `  d )  x.  ( log `  d
) )  e.  RR )
3534recnd 9516 . . 3  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  (
(Λ `  d )  x.  ( log `  d
) )  e.  CC )
364, 29, 35fsumadd 13326 . 2  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( sum_ u  e.  {
x  e.  NN  |  x  ||  d }  (
(Λ `  u )  x.  (Λ `  ( d  /  u ) ) )  +  ( (Λ `  d
)  x.  ( log `  d ) ) )  =  ( sum_ d  e.  { x  e.  NN  |  x  ||  N } sum_ u  e.  { x  e.  NN  |  x  ||  d }  ( (Λ `  u )  x.  (Λ `  ( d  /  u
) ) )  + 
sum_ d  e.  {
x  e.  NN  |  x  ||  N }  (
(Λ `  d )  x.  ( log `  d
) ) ) )
37 id 22 . . . . 5  |-  ( N  e.  NN  ->  N  e.  NN )
38 oveq1 6200 . . . . . . 7  |-  ( d  =  ( u  x.  k )  ->  (
d  /  u )  =  ( ( u  x.  k )  /  u ) )
3938fveq2d 5796 . . . . . 6  |-  ( d  =  ( u  x.  k )  ->  (Λ `  ( d  /  u
) )  =  (Λ `  ( ( u  x.  k )  /  u
) ) )
4039oveq2d 6209 . . . . 5  |-  ( d  =  ( u  x.  k )  ->  (
(Λ `  u )  x.  (Λ `  ( d  /  u ) ) )  =  ( (Λ `  u
)  x.  (Λ `  (
( u  x.  k
)  /  u ) ) ) )
4137, 40, 27fsumdvdscom 22651 . . . 4  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } sum_ u  e.  { x  e.  NN  |  x  ||  d }  ( (Λ `  u )  x.  (Λ `  ( d  /  u
) ) )  = 
sum_ u  e.  { x  e.  NN  |  x  ||  N } sum_ k  e.  {
x  e.  NN  |  x  ||  ( N  /  u ) }  (
(Λ `  u )  x.  (Λ `  ( (
u  x.  k )  /  u ) ) ) )
42 ssrab2 3538 . . . . . . . . . . . . 13  |-  { x  e.  NN  |  x  ||  ( N  /  u
) }  C_  NN
43 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )
4442, 43sseldi 3455 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  k  e.  NN )
4544nncnd 10442 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  k  e.  CC )
46 ssrab2 3538 . . . . . . . . . . . . . 14  |-  { x  e.  NN  |  x  ||  N }  C_  NN
47 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  u  e.  { x  e.  NN  |  x  ||  N }
)
4846, 47sseldi 3455 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  u  e.  NN )
4948nncnd 10442 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  u  e.  CC )
5049adantr 465 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  u  e.  CC )
5148nnne0d 10470 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  u  =/=  0 )
5251adantr 465 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  u  =/=  0 )
5345, 50, 52divcan3d 10216 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  ( (
u  x.  k )  /  u )  =  k )
5453fveq2d 5796 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  (Λ `  (
( u  x.  k
)  /  u ) )  =  (Λ `  k
) )
5554sumeq2dv 13291 . . . . . . . 8  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  sum_ k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) }  (Λ `  ( (
u  x.  k )  /  u ) )  =  sum_ k  e.  {
x  e.  NN  |  x  ||  ( N  /  u ) }  (Λ `  k ) )
56 dvdsdivcl 22647 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  u )  e. 
{ x  e.  NN  |  x  ||  N }
)
5746, 56sseldi 3455 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  u )  e.  NN )
58 vmasum 22681 . . . . . . . . 9  |-  ( ( N  /  u )  e.  NN  ->  sum_ k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) }  (Λ `  k )  =  ( log `  ( N  /  u ) ) )
5957, 58syl 16 . . . . . . . 8  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  sum_ k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) }  (Λ `  k )  =  ( log `  ( N  /  u ) ) )
60 nnrp 11104 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  RR+ )
6160adantr 465 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  N  e.  RR+ )
6248nnrpd 11130 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  u  e.  RR+ )
6361, 62relogdivd 22201 . . . . . . . 8  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  ( log `  ( N  /  u ) )  =  ( ( log `  N
)  -  ( log `  u ) ) )
6455, 59, 633eqtrd 2496 . . . . . . 7  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  sum_ k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) }  (Λ `  ( (
u  x.  k )  /  u ) )  =  ( ( log `  N )  -  ( log `  u ) ) )
6564oveq2d 6209 . . . . . 6  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  (
(Λ `  u )  x. 
sum_ k  e.  {
x  e.  NN  |  x  ||  ( N  /  u ) }  (Λ `  ( ( u  x.  k )  /  u
) ) )  =  ( (Λ `  u
)  x.  ( ( log `  N )  -  ( log `  u
) ) ) )
66 fzfid 11905 . . . . . . . 8  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  (
1 ... ( N  /  u ) )  e. 
Fin )
67 sgmss 22570 . . . . . . . . 9  |-  ( ( N  /  u )  e.  NN  ->  { x  e.  NN  |  x  ||  ( N  /  u
) }  C_  (
1 ... ( N  /  u ) ) )
6857, 67syl 16 . . . . . . . 8  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  { x  e.  NN  |  x  ||  ( N  /  u
) }  C_  (
1 ... ( N  /  u ) ) )
69 ssfi 7637 . . . . . . . 8  |-  ( ( ( 1 ... ( N  /  u ) )  e.  Fin  /\  {
x  e.  NN  |  x  ||  ( N  /  u ) }  C_  ( 1 ... ( N  /  u ) ) )  ->  { x  e.  NN  |  x  ||  ( N  /  u
) }  e.  Fin )
7066, 68, 69syl2anc 661 . . . . . . 7  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  { x  e.  NN  |  x  ||  ( N  /  u
) }  e.  Fin )
7148, 14syl 16 . . . . . . . 8  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  (Λ `  u )  e.  RR )
7271recnd 9516 . . . . . . 7  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  (Λ `  u )  e.  CC )
73 vmacl 22582 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (Λ `  k )  e.  RR )
7444, 73syl 16 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  (Λ `  k
)  e.  RR )
7574recnd 9516 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  (Λ `  k
)  e.  CC )
7654, 75eqeltrd 2539 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  (Λ `  (
( u  x.  k
)  /  u ) )  e.  CC )
7770, 72, 76fsummulc2 13362 . . . . . 6  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  (
(Λ `  u )  x. 
sum_ k  e.  {
x  e.  NN  |  x  ||  ( N  /  u ) }  (Λ `  ( ( u  x.  k )  /  u
) ) )  = 
sum_ k  e.  {
x  e.  NN  |  x  ||  ( N  /  u ) }  (
(Λ `  u )  x.  (Λ `  ( (
u  x.  k )  /  u ) ) ) )
78 relogcl 22153 . . . . . . . . 9  |-  ( N  e.  RR+  ->  ( log `  N )  e.  RR )
7978recnd 9516 . . . . . . . 8  |-  ( N  e.  RR+  ->  ( log `  N )  e.  CC )
8061, 79syl 16 . . . . . . 7  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  ( log `  N )  e.  CC )
8162relogcld 22198 . . . . . . . 8  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  ( log `  u )  e.  RR )
8281recnd 9516 . . . . . . 7  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  ( log `  u )  e.  CC )
8372, 80, 82subdid 9904 . . . . . 6  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  (
(Λ `  u )  x.  ( ( log `  N
)  -  ( log `  u ) ) )  =  ( ( (Λ `  u )  x.  ( log `  N ) )  -  ( (Λ `  u
)  x.  ( log `  u ) ) ) )
8465, 77, 833eqtr3d 2500 . . . . 5  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  sum_ k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) }  ( (Λ `  u
)  x.  (Λ `  (
( u  x.  k
)  /  u ) ) )  =  ( ( (Λ `  u
)  x.  ( log `  N ) )  -  ( (Λ `  u )  x.  ( log `  u
) ) ) )
8584sumeq2dv 13291 . . . 4  |-  ( N  e.  NN  ->  sum_ u  e.  { x  e.  NN  |  x  ||  N } sum_ k  e.  { x  e.  NN  |  x  ||  ( N  /  u
) }  ( (Λ `  u )  x.  (Λ `  ( ( u  x.  k )  /  u
) ) )  = 
sum_ u  e.  { x  e.  NN  |  x  ||  N }  ( (
(Λ `  u )  x.  ( log `  N
) )  -  (
(Λ `  u )  x.  ( log `  u
) ) ) )
8672, 80mulcld 9510 . . . . . 6  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  (
(Λ `  u )  x.  ( log `  N
) )  e.  CC )
8772, 82mulcld 9510 . . . . . 6  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  (
(Λ `  u )  x.  ( log `  u
) )  e.  CC )
884, 86, 87fsumsub 13366 . . . . 5  |-  ( N  e.  NN  ->  sum_ u  e.  { x  e.  NN  |  x  ||  N } 
( ( (Λ `  u
)  x.  ( log `  N ) )  -  ( (Λ `  u )  x.  ( log `  u
) ) )  =  ( sum_ u  e.  {
x  e.  NN  |  x  ||  N }  (
(Λ `  u )  x.  ( log `  N
) )  -  sum_ u  e.  { x  e.  NN  |  x  ||  N }  ( (Λ `  u )  x.  ( log `  u ) ) ) )
8960, 79syl 16 . . . . . . . 8  |-  ( N  e.  NN  ->  ( log `  N )  e.  CC )
9089sqvald 12115 . . . . . . 7  |-  ( N  e.  NN  ->  (
( log `  N
) ^ 2 )  =  ( ( log `  N )  x.  ( log `  N ) ) )
91 vmasum 22681 . . . . . . . 8  |-  ( N  e.  NN  ->  sum_ u  e.  { x  e.  NN  |  x  ||  N } 
(Λ `  u )  =  ( log `  N
) )
9291oveq1d 6208 . . . . . . 7  |-  ( N  e.  NN  ->  ( sum_ u  e.  { x  e.  NN  |  x  ||  N }  (Λ `  u
)  x.  ( log `  N ) )  =  ( ( log `  N
)  x.  ( log `  N ) ) )
934, 89, 72fsummulc1 13363 . . . . . . 7  |-  ( N  e.  NN  ->  ( sum_ u  e.  { x  e.  NN  |  x  ||  N }  (Λ `  u
)  x.  ( log `  N ) )  = 
sum_ u  e.  { x  e.  NN  |  x  ||  N }  ( (Λ `  u )  x.  ( log `  N ) ) )
9490, 92, 933eqtr2rd 2499 . . . . . 6  |-  ( N  e.  NN  ->  sum_ u  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  u )  x.  ( log `  N
) )  =  ( ( log `  N
) ^ 2 ) )
95 fveq2 5792 . . . . . . . . 9  |-  ( u  =  d  ->  (Λ `  u )  =  (Λ `  d ) )
96 fveq2 5792 . . . . . . . . 9  |-  ( u  =  d  ->  ( log `  u )  =  ( log `  d
) )
9795, 96oveq12d 6211 . . . . . . . 8  |-  ( u  =  d  ->  (
(Λ `  u )  x.  ( log `  u
) )  =  ( (Λ `  d )  x.  ( log `  d
) ) )
9897cbvsumv 13284 . . . . . . 7  |-  sum_ u  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  u )  x.  ( log `  u
) )  =  sum_ d  e.  { x  e.  NN  |  x  ||  N }  ( (Λ `  d )  x.  ( log `  d ) )
9998a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  sum_ u  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  u )  x.  ( log `  u
) )  =  sum_ d  e.  { x  e.  NN  |  x  ||  N }  ( (Λ `  d )  x.  ( log `  d ) ) )
10094, 99oveq12d 6211 . . . . 5  |-  ( N  e.  NN  ->  ( sum_ u  e.  { x  e.  NN  |  x  ||  N }  ( (Λ `  u )  x.  ( log `  N ) )  -  sum_ u  e.  {
x  e.  NN  |  x  ||  N }  (
(Λ `  u )  x.  ( log `  u
) ) )  =  ( ( ( log `  N ) ^ 2 )  -  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  d )  x.  ( log `  d
) ) ) )
10188, 100eqtrd 2492 . . . 4  |-  ( N  e.  NN  ->  sum_ u  e.  { x  e.  NN  |  x  ||  N } 
( ( (Λ `  u
)  x.  ( log `  N ) )  -  ( (Λ `  u )  x.  ( log `  u
) ) )  =  ( ( ( log `  N ) ^ 2 )  -  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  d )  x.  ( log `  d
) ) ) )
10241, 85, 1013eqtrd 2496 . . 3  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } sum_ u  e.  { x  e.  NN  |  x  ||  d }  ( (Λ `  u )  x.  (Λ `  ( d  /  u
) ) )  =  ( ( ( log `  N ) ^ 2 )  -  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  d )  x.  ( log `  d
) ) ) )
103102oveq1d 6208 . 2  |-  ( N  e.  NN  ->  ( sum_ d  e.  { x  e.  NN  |  x  ||  N } sum_ u  e.  {
x  e.  NN  |  x  ||  d }  (
(Λ `  u )  x.  (Λ `  ( d  /  u ) ) )  +  sum_ d  e.  {
x  e.  NN  |  x  ||  N }  (
(Λ `  d )  x.  ( log `  d
) ) )  =  ( ( ( ( log `  N ) ^ 2 )  -  sum_ d  e.  { x  e.  NN  |  x  ||  N }  ( (Λ `  d )  x.  ( log `  d ) ) )  +  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  d )  x.  ( log `  d
) ) ) )
10489sqcld 12116 . . 3  |-  ( N  e.  NN  ->  (
( log `  N
) ^ 2 )  e.  CC )
1054, 35fsumcl 13321 . . 3  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  d )  x.  ( log `  d
) )  e.  CC )
106104, 105npcand 9827 . 2  |-  ( N  e.  NN  ->  (
( ( ( log `  N ) ^ 2 )  -  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  d )  x.  ( log `  d
) ) )  + 
sum_ d  e.  {
x  e.  NN  |  x  ||  N }  (
(Λ `  d )  x.  ( log `  d
) ) )  =  ( ( log `  N
) ^ 2 ) )
10736, 103, 1063eqtrd 2496 1  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( sum_ u  e.  {
x  e.  NN  |  x  ||  d }  (
(Λ `  u )  x.  (Λ `  ( d  /  u ) ) )  +  ( (Λ `  d
)  x.  ( log `  d ) ) )  =  ( ( log `  N ) ^ 2 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2644   {crab 2799    C_ wss 3429   class class class wbr 4393   ` cfv 5519  (class class class)co 6193   Fincfn 7413   CCcc 9384   RRcr 9385   0cc0 9386   1c1 9387    + caddc 9389    x. cmul 9391    - cmin 9699    / cdiv 10097   NNcn 10426   2c2 10475   RR+crp 11095   ...cfz 11547   ^cexp 11975   sum_csu 13274    || cdivides 13646   logclog 22132  Λcvma 22555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-inf2 7951  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463  ax-pre-sup 9464  ax-addf 9465  ax-mulf 9466
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-int 4230  df-iun 4274  df-iin 4275  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-se 4781  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-isom 5528  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-of 6423  df-om 6580  df-1st 6680  df-2nd 6681  df-supp 6794  df-recs 6935  df-rdg 6969  df-1o 7023  df-2o 7024  df-oadd 7027  df-er 7204  df-map 7319  df-pm 7320  df-ixp 7367  df-en 7414  df-dom 7415  df-sdom 7416  df-fin 7417  df-fsupp 7725  df-fi 7765  df-sup 7795  df-oi 7828  df-card 8213  df-cda 8441  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-div 10098  df-nn 10427  df-2 10484  df-3 10485  df-4 10486  df-5 10487  df-6 10488  df-7 10489  df-8 10490  df-9 10491  df-10 10492  df-n0 10684  df-z 10751  df-dec 10860  df-uz 10966  df-q 11058  df-rp 11096  df-xneg 11193  df-xadd 11194  df-xmul 11195  df-ioo 11408  df-ioc 11409  df-ico 11410  df-icc 11411  df-fz 11548  df-fzo 11659  df-fl 11752  df-mod 11819  df-seq 11917  df-exp 11976  df-fac 12162  df-bc 12189  df-hash 12214  df-shft 12667  df-cj 12699  df-re 12700  df-im 12701  df-sqr 12835  df-abs 12836  df-limsup 13060  df-clim 13077  df-rlim 13078  df-sum 13275  df-ef 13464  df-sin 13466  df-cos 13467  df-pi 13469  df-dvds 13647  df-gcd 13802  df-prm 13875  df-pc 14015  df-struct 14287  df-ndx 14288  df-slot 14289  df-base 14290  df-sets 14291  df-ress 14292  df-plusg 14362  df-mulr 14363  df-starv 14364  df-sca 14365  df-vsca 14366  df-ip 14367  df-tset 14368  df-ple 14369  df-ds 14371  df-unif 14372  df-hom 14373  df-cco 14374  df-rest 14472  df-topn 14473  df-0g 14491  df-gsum 14492  df-topgen 14493  df-pt 14494  df-prds 14497  df-xrs 14551  df-qtop 14556  df-imas 14557  df-xps 14559  df-mre 14635  df-mrc 14636  df-acs 14638  df-mnd 15526  df-submnd 15576  df-mulg 15659  df-cntz 15946  df-cmn 16392  df-psmet 17927  df-xmet 17928  df-met 17929  df-bl 17930  df-mopn 17931  df-fbas 17932  df-fg 17933  df-cnfld 17937  df-top 18628  df-bases 18630  df-topon 18631  df-topsp 18632  df-cld 18748  df-ntr 18749  df-cls 18750  df-nei 18827  df-lp 18865  df-perf 18866  df-cn 18956  df-cnp 18957  df-haus 19044  df-tx 19260  df-hmeo 19453  df-fil 19544  df-fm 19636  df-flim 19637  df-flf 19638  df-xms 20020  df-ms 20021  df-tms 20022  df-cncf 20579  df-limc 21467  df-dv 21468  df-log 22134  df-vma 22561
This theorem is referenced by:  logsqvma2  22918
  Copyright terms: Public domain W3C validator