MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logsqvma Unicode version

Theorem logsqvma 21189
Description: A formula for  log ^
2 ( N ) in terms of the primes. Equation 10.4.6 of [Shapiro], p. 418. (Contributed by Mario Carneiro, 13-May-2016.)
Assertion
Ref Expression
logsqvma  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( sum_ u  e.  {
x  e.  NN  |  x  ||  d }  (
(Λ `  u )  x.  (Λ `  ( d  /  u ) ) )  +  ( (Λ `  d
)  x.  ( log `  d ) ) )  =  ( ( log `  N ) ^ 2 ) )
Distinct variable group:    u, d, x, N

Proof of Theorem logsqvma
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 fzfid 11267 . . . 4  |-  ( N  e.  NN  ->  (
1 ... N )  e. 
Fin )
2 sgmss 20842 . . . 4  |-  ( N  e.  NN  ->  { x  e.  NN  |  x  ||  N }  C_  ( 1 ... N ) )
3 ssfi 7288 . . . 4  |-  ( ( ( 1 ... N
)  e.  Fin  /\  { x  e.  NN  |  x  ||  N }  C_  ( 1 ... N
) )  ->  { x  e.  NN  |  x  ||  N }  e.  Fin )
41, 2, 3syl2anc 643 . . 3  |-  ( N  e.  NN  ->  { x  e.  NN  |  x  ||  N }  e.  Fin )
5 fzfid 11267 . . . . 5  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  (
1 ... d )  e. 
Fin )
6 elrabi 3050 . . . . . . 7  |-  ( d  e.  { x  e.  NN  |  x  ||  N }  ->  d  e.  NN )
76adantl 453 . . . . . 6  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  d  e.  NN )
8 sgmss 20842 . . . . . 6  |-  ( d  e.  NN  ->  { x  e.  NN  |  x  ||  d }  C_  ( 1 ... d ) )
97, 8syl 16 . . . . 5  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  { x  e.  NN  |  x  ||  d }  C_  ( 1 ... d ) )
10 ssfi 7288 . . . . 5  |-  ( ( ( 1 ... d
)  e.  Fin  /\  { x  e.  NN  |  x  ||  d }  C_  ( 1 ... d
) )  ->  { x  e.  NN  |  x  ||  d }  e.  Fin )
115, 9, 10syl2anc 643 . . . 4  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  { x  e.  NN  |  x  ||  d }  e.  Fin )
12 elrabi 3050 . . . . . . . . 9  |-  ( u  e.  { x  e.  NN  |  x  ||  d }  ->  u  e.  NN )
1312ad2antll 710 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( d  e.  {
x  e.  NN  |  x  ||  N }  /\  u  e.  { x  e.  NN  |  x  ||  d } ) )  ->  u  e.  NN )
14 vmacl 20854 . . . . . . . 8  |-  ( u  e.  NN  ->  (Λ `  u )  e.  RR )
1513, 14syl 16 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( d  e.  {
x  e.  NN  |  x  ||  N }  /\  u  e.  { x  e.  NN  |  x  ||  d } ) )  -> 
(Λ `  u )  e.  RR )
16 breq1 4175 . . . . . . . . . . . 12  |-  ( x  =  u  ->  (
x  ||  d  <->  u  ||  d
) )
1716elrab 3052 . . . . . . . . . . 11  |-  ( u  e.  { x  e.  NN  |  x  ||  d }  <->  ( u  e.  NN  /\  u  ||  d ) )
1817simprbi 451 . . . . . . . . . 10  |-  ( u  e.  { x  e.  NN  |  x  ||  d }  ->  u  ||  d )
1918ad2antll 710 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( d  e.  {
x  e.  NN  |  x  ||  N }  /\  u  e.  { x  e.  NN  |  x  ||  d } ) )  ->  u  ||  d )
206ad2antrl 709 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( d  e.  {
x  e.  NN  |  x  ||  N }  /\  u  e.  { x  e.  NN  |  x  ||  d } ) )  -> 
d  e.  NN )
21 nndivdvds 12813 . . . . . . . . . 10  |-  ( ( d  e.  NN  /\  u  e.  NN )  ->  ( u  ||  d  <->  ( d  /  u )  e.  NN ) )
2220, 13, 21syl2anc 643 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( d  e.  {
x  e.  NN  |  x  ||  N }  /\  u  e.  { x  e.  NN  |  x  ||  d } ) )  -> 
( u  ||  d  <->  ( d  /  u )  e.  NN ) )
2319, 22mpbid 202 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( d  e.  {
x  e.  NN  |  x  ||  N }  /\  u  e.  { x  e.  NN  |  x  ||  d } ) )  -> 
( d  /  u
)  e.  NN )
24 vmacl 20854 . . . . . . . 8  |-  ( ( d  /  u )  e.  NN  ->  (Λ `  ( d  /  u
) )  e.  RR )
2523, 24syl 16 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( d  e.  {
x  e.  NN  |  x  ||  N }  /\  u  e.  { x  e.  NN  |  x  ||  d } ) )  -> 
(Λ `  ( d  /  u ) )  e.  RR )
2615, 25remulcld 9072 . . . . . 6  |-  ( ( N  e.  NN  /\  ( d  e.  {
x  e.  NN  |  x  ||  N }  /\  u  e.  { x  e.  NN  |  x  ||  d } ) )  -> 
( (Λ `  u )  x.  (Λ `  ( d  /  u ) ) )  e.  RR )
2726recnd 9070 . . . . 5  |-  ( ( N  e.  NN  /\  ( d  e.  {
x  e.  NN  |  x  ||  N }  /\  u  e.  { x  e.  NN  |  x  ||  d } ) )  -> 
( (Λ `  u )  x.  (Λ `  ( d  /  u ) ) )  e.  CC )
2827anassrs 630 . . . 4  |-  ( ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  /\  u  e.  { x  e.  NN  |  x  ||  d } )  ->  ( (Λ `  u )  x.  (Λ `  ( d  /  u
) ) )  e.  CC )
2911, 28fsumcl 12482 . . 3  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  sum_ u  e.  { x  e.  NN  |  x  ||  d }  ( (Λ `  u
)  x.  (Λ `  (
d  /  u ) ) )  e.  CC )
30 vmacl 20854 . . . . . 6  |-  ( d  e.  NN  ->  (Λ `  d )  e.  RR )
317, 30syl 16 . . . . 5  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  (Λ `  d )  e.  RR )
327nnrpd 10603 . . . . . 6  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  d  e.  RR+ )
3332relogcld 20471 . . . . 5  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  ( log `  d )  e.  RR )
3431, 33remulcld 9072 . . . 4  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  (
(Λ `  d )  x.  ( log `  d
) )  e.  RR )
3534recnd 9070 . . 3  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  (
(Λ `  d )  x.  ( log `  d
) )  e.  CC )
364, 29, 35fsumadd 12487 . 2  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( sum_ u  e.  {
x  e.  NN  |  x  ||  d }  (
(Λ `  u )  x.  (Λ `  ( d  /  u ) ) )  +  ( (Λ `  d
)  x.  ( log `  d ) ) )  =  ( sum_ d  e.  { x  e.  NN  |  x  ||  N } sum_ u  e.  { x  e.  NN  |  x  ||  d }  ( (Λ `  u )  x.  (Λ `  ( d  /  u
) ) )  + 
sum_ d  e.  {
x  e.  NN  |  x  ||  N }  (
(Λ `  d )  x.  ( log `  d
) ) ) )
37 id 20 . . . . 5  |-  ( N  e.  NN  ->  N  e.  NN )
38 oveq1 6047 . . . . . . 7  |-  ( d  =  ( u  x.  k )  ->  (
d  /  u )  =  ( ( u  x.  k )  /  u ) )
3938fveq2d 5691 . . . . . 6  |-  ( d  =  ( u  x.  k )  ->  (Λ `  ( d  /  u
) )  =  (Λ `  ( ( u  x.  k )  /  u
) ) )
4039oveq2d 6056 . . . . 5  |-  ( d  =  ( u  x.  k )  ->  (
(Λ `  u )  x.  (Λ `  ( d  /  u ) ) )  =  ( (Λ `  u
)  x.  (Λ `  (
( u  x.  k
)  /  u ) ) ) )
4137, 40, 27fsumdvdscom 20923 . . . 4  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } sum_ u  e.  { x  e.  NN  |  x  ||  d }  ( (Λ `  u )  x.  (Λ `  ( d  /  u
) ) )  = 
sum_ u  e.  { x  e.  NN  |  x  ||  N } sum_ k  e.  {
x  e.  NN  |  x  ||  ( N  /  u ) }  (
(Λ `  u )  x.  (Λ `  ( (
u  x.  k )  /  u ) ) ) )
42 ssrab2 3388 . . . . . . . . . . . . 13  |-  { x  e.  NN  |  x  ||  ( N  /  u
) }  C_  NN
43 simpr 448 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )
4442, 43sseldi 3306 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  k  e.  NN )
4544nncnd 9972 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  k  e.  CC )
46 ssrab2 3388 . . . . . . . . . . . . . 14  |-  { x  e.  NN  |  x  ||  N }  C_  NN
47 simpr 448 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  u  e.  { x  e.  NN  |  x  ||  N }
)
4846, 47sseldi 3306 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  u  e.  NN )
4948nncnd 9972 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  u  e.  CC )
5049adantr 452 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  u  e.  CC )
5148nnne0d 10000 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  u  =/=  0 )
5251adantr 452 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  u  =/=  0 )
5345, 50, 52divcan3d 9751 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  ( (
u  x.  k )  /  u )  =  k )
5453fveq2d 5691 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  (Λ `  (
( u  x.  k
)  /  u ) )  =  (Λ `  k
) )
5554sumeq2dv 12452 . . . . . . . 8  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  sum_ k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) }  (Λ `  ( (
u  x.  k )  /  u ) )  =  sum_ k  e.  {
x  e.  NN  |  x  ||  ( N  /  u ) }  (Λ `  k ) )
56 dvdsdivcl 20919 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  u )  e. 
{ x  e.  NN  |  x  ||  N }
)
5746, 56sseldi 3306 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  u )  e.  NN )
58 vmasum 20953 . . . . . . . . 9  |-  ( ( N  /  u )  e.  NN  ->  sum_ k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) }  (Λ `  k )  =  ( log `  ( N  /  u ) ) )
5957, 58syl 16 . . . . . . . 8  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  sum_ k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) }  (Λ `  k )  =  ( log `  ( N  /  u ) ) )
60 nnrp 10577 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  RR+ )
6160adantr 452 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  N  e.  RR+ )
6248nnrpd 10603 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  u  e.  RR+ )
6361, 62relogdivd 20474 . . . . . . . 8  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  ( log `  ( N  /  u ) )  =  ( ( log `  N
)  -  ( log `  u ) ) )
6455, 59, 633eqtrd 2440 . . . . . . 7  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  sum_ k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) }  (Λ `  ( (
u  x.  k )  /  u ) )  =  ( ( log `  N )  -  ( log `  u ) ) )
6564oveq2d 6056 . . . . . 6  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  (
(Λ `  u )  x. 
sum_ k  e.  {
x  e.  NN  |  x  ||  ( N  /  u ) }  (Λ `  ( ( u  x.  k )  /  u
) ) )  =  ( (Λ `  u
)  x.  ( ( log `  N )  -  ( log `  u
) ) ) )
66 fzfid 11267 . . . . . . . 8  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  (
1 ... ( N  /  u ) )  e. 
Fin )
67 sgmss 20842 . . . . . . . . 9  |-  ( ( N  /  u )  e.  NN  ->  { x  e.  NN  |  x  ||  ( N  /  u
) }  C_  (
1 ... ( N  /  u ) ) )
6857, 67syl 16 . . . . . . . 8  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  { x  e.  NN  |  x  ||  ( N  /  u
) }  C_  (
1 ... ( N  /  u ) ) )
69 ssfi 7288 . . . . . . . 8  |-  ( ( ( 1 ... ( N  /  u ) )  e.  Fin  /\  {
x  e.  NN  |  x  ||  ( N  /  u ) }  C_  ( 1 ... ( N  /  u ) ) )  ->  { x  e.  NN  |  x  ||  ( N  /  u
) }  e.  Fin )
7066, 68, 69syl2anc 643 . . . . . . 7  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  { x  e.  NN  |  x  ||  ( N  /  u
) }  e.  Fin )
7148, 14syl 16 . . . . . . . 8  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  (Λ `  u )  e.  RR )
7271recnd 9070 . . . . . . 7  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  (Λ `  u )  e.  CC )
73 vmacl 20854 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (Λ `  k )  e.  RR )
7444, 73syl 16 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  (Λ `  k
)  e.  RR )
7574recnd 9070 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  (Λ `  k
)  e.  CC )
7654, 75eqeltrd 2478 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  (Λ `  (
( u  x.  k
)  /  u ) )  e.  CC )
7770, 72, 76fsummulc2 12522 . . . . . 6  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  (
(Λ `  u )  x. 
sum_ k  e.  {
x  e.  NN  |  x  ||  ( N  /  u ) }  (Λ `  ( ( u  x.  k )  /  u
) ) )  = 
sum_ k  e.  {
x  e.  NN  |  x  ||  ( N  /  u ) }  (
(Λ `  u )  x.  (Λ `  ( (
u  x.  k )  /  u ) ) ) )
78 relogcl 20426 . . . . . . . . 9  |-  ( N  e.  RR+  ->  ( log `  N )  e.  RR )
7978recnd 9070 . . . . . . . 8  |-  ( N  e.  RR+  ->  ( log `  N )  e.  CC )
8061, 79syl 16 . . . . . . 7  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  ( log `  N )  e.  CC )
8162relogcld 20471 . . . . . . . 8  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  ( log `  u )  e.  RR )
8281recnd 9070 . . . . . . 7  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  ( log `  u )  e.  CC )
8372, 80, 82subdid 9445 . . . . . 6  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  (
(Λ `  u )  x.  ( ( log `  N
)  -  ( log `  u ) ) )  =  ( ( (Λ `  u )  x.  ( log `  N ) )  -  ( (Λ `  u
)  x.  ( log `  u ) ) ) )
8465, 77, 833eqtr3d 2444 . . . . 5  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  sum_ k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) }  ( (Λ `  u
)  x.  (Λ `  (
( u  x.  k
)  /  u ) ) )  =  ( ( (Λ `  u
)  x.  ( log `  N ) )  -  ( (Λ `  u )  x.  ( log `  u
) ) ) )
8584sumeq2dv 12452 . . . 4  |-  ( N  e.  NN  ->  sum_ u  e.  { x  e.  NN  |  x  ||  N } sum_ k  e.  { x  e.  NN  |  x  ||  ( N  /  u
) }  ( (Λ `  u )  x.  (Λ `  ( ( u  x.  k )  /  u
) ) )  = 
sum_ u  e.  { x  e.  NN  |  x  ||  N }  ( (
(Λ `  u )  x.  ( log `  N
) )  -  (
(Λ `  u )  x.  ( log `  u
) ) ) )
8672, 80mulcld 9064 . . . . . 6  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  (
(Λ `  u )  x.  ( log `  N
) )  e.  CC )
8772, 82mulcld 9064 . . . . . 6  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  (
(Λ `  u )  x.  ( log `  u
) )  e.  CC )
884, 86, 87fsumsub 12526 . . . . 5  |-  ( N  e.  NN  ->  sum_ u  e.  { x  e.  NN  |  x  ||  N } 
( ( (Λ `  u
)  x.  ( log `  N ) )  -  ( (Λ `  u )  x.  ( log `  u
) ) )  =  ( sum_ u  e.  {
x  e.  NN  |  x  ||  N }  (
(Λ `  u )  x.  ( log `  N
) )  -  sum_ u  e.  { x  e.  NN  |  x  ||  N }  ( (Λ `  u )  x.  ( log `  u ) ) ) )
8960, 79syl 16 . . . . . . . 8  |-  ( N  e.  NN  ->  ( log `  N )  e.  CC )
9089sqvald 11475 . . . . . . 7  |-  ( N  e.  NN  ->  (
( log `  N
) ^ 2 )  =  ( ( log `  N )  x.  ( log `  N ) ) )
91 vmasum 20953 . . . . . . . 8  |-  ( N  e.  NN  ->  sum_ u  e.  { x  e.  NN  |  x  ||  N } 
(Λ `  u )  =  ( log `  N
) )
9291oveq1d 6055 . . . . . . 7  |-  ( N  e.  NN  ->  ( sum_ u  e.  { x  e.  NN  |  x  ||  N }  (Λ `  u
)  x.  ( log `  N ) )  =  ( ( log `  N
)  x.  ( log `  N ) ) )
934, 89, 72fsummulc1 12523 . . . . . . 7  |-  ( N  e.  NN  ->  ( sum_ u  e.  { x  e.  NN  |  x  ||  N }  (Λ `  u
)  x.  ( log `  N ) )  = 
sum_ u  e.  { x  e.  NN  |  x  ||  N }  ( (Λ `  u )  x.  ( log `  N ) ) )
9490, 92, 933eqtr2rd 2443 . . . . . 6  |-  ( N  e.  NN  ->  sum_ u  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  u )  x.  ( log `  N
) )  =  ( ( log `  N
) ^ 2 ) )
95 fveq2 5687 . . . . . . . . 9  |-  ( u  =  d  ->  (Λ `  u )  =  (Λ `  d ) )
96 fveq2 5687 . . . . . . . . 9  |-  ( u  =  d  ->  ( log `  u )  =  ( log `  d
) )
9795, 96oveq12d 6058 . . . . . . . 8  |-  ( u  =  d  ->  (
(Λ `  u )  x.  ( log `  u
) )  =  ( (Λ `  d )  x.  ( log `  d
) ) )
9897cbvsumv 12445 . . . . . . 7  |-  sum_ u  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  u )  x.  ( log `  u
) )  =  sum_ d  e.  { x  e.  NN  |  x  ||  N }  ( (Λ `  d )  x.  ( log `  d ) )
9998a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  sum_ u  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  u )  x.  ( log `  u
) )  =  sum_ d  e.  { x  e.  NN  |  x  ||  N }  ( (Λ `  d )  x.  ( log `  d ) ) )
10094, 99oveq12d 6058 . . . . 5  |-  ( N  e.  NN  ->  ( sum_ u  e.  { x  e.  NN  |  x  ||  N }  ( (Λ `  u )  x.  ( log `  N ) )  -  sum_ u  e.  {
x  e.  NN  |  x  ||  N }  (
(Λ `  u )  x.  ( log `  u
) ) )  =  ( ( ( log `  N ) ^ 2 )  -  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  d )  x.  ( log `  d
) ) ) )
10188, 100eqtrd 2436 . . . 4  |-  ( N  e.  NN  ->  sum_ u  e.  { x  e.  NN  |  x  ||  N } 
( ( (Λ `  u
)  x.  ( log `  N ) )  -  ( (Λ `  u )  x.  ( log `  u
) ) )  =  ( ( ( log `  N ) ^ 2 )  -  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  d )  x.  ( log `  d
) ) ) )
10241, 85, 1013eqtrd 2440 . . 3  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } sum_ u  e.  { x  e.  NN  |  x  ||  d }  ( (Λ `  u )  x.  (Λ `  ( d  /  u
) ) )  =  ( ( ( log `  N ) ^ 2 )  -  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  d )  x.  ( log `  d
) ) ) )
103102oveq1d 6055 . 2  |-  ( N  e.  NN  ->  ( sum_ d  e.  { x  e.  NN  |  x  ||  N } sum_ u  e.  {
x  e.  NN  |  x  ||  d }  (
(Λ `  u )  x.  (Λ `  ( d  /  u ) ) )  +  sum_ d  e.  {
x  e.  NN  |  x  ||  N }  (
(Λ `  d )  x.  ( log `  d
) ) )  =  ( ( ( ( log `  N ) ^ 2 )  -  sum_ d  e.  { x  e.  NN  |  x  ||  N }  ( (Λ `  d )  x.  ( log `  d ) ) )  +  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  d )  x.  ( log `  d
) ) ) )
10489sqcld 11476 . . 3  |-  ( N  e.  NN  ->  (
( log `  N
) ^ 2 )  e.  CC )
1054, 35fsumcl 12482 . . 3  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  d )  x.  ( log `  d
) )  e.  CC )
106104, 105npcand 9371 . 2  |-  ( N  e.  NN  ->  (
( ( ( log `  N ) ^ 2 )  -  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  d )  x.  ( log `  d
) ) )  + 
sum_ d  e.  {
x  e.  NN  |  x  ||  N }  (
(Λ `  d )  x.  ( log `  d
) ) )  =  ( ( log `  N
) ^ 2 ) )
10736, 103, 1063eqtrd 2440 1  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( sum_ u  e.  {
x  e.  NN  |  x  ||  d }  (
(Λ `  u )  x.  (Λ `  ( d  /  u ) ) )  +  ( (Λ `  d
)  x.  ( log `  d ) ) )  =  ( ( log `  N ) ^ 2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   {crab 2670    C_ wss 3280   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   Fincfn 7068   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    - cmin 9247    / cdiv 9633   NNcn 9956   2c2 10005   RR+crp 10568   ...cfz 10999   ^cexp 11337   sum_csu 12434    || cdivides 12807   logclog 20405  Λcvma 20827
This theorem is referenced by:  logsqvma2  21190
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-ef 12625  df-sin 12627  df-cos 12628  df-pi 12630  df-dvds 12808  df-gcd 12962  df-prm 13035  df-pc 13166  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-log 20407  df-vma 20833
  Copyright terms: Public domain W3C validator