MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logltb Structured version   Unicode version

Theorem logltb 21935
Description: The natural logarithm function on positive reals is strictly monotonic. (Contributed by Steve Rodriguez, 25-Nov-2007.)
Assertion
Ref Expression
logltb  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  <  B  <->  ( log `  A )  <  ( log `  B ) ) )

Proof of Theorem logltb
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relogiso 21933 . . . . 5  |-  ( log  |`  RR+ )  Isom  <  ,  <  ( RR+ ,  RR )
2 df-isom 5417 . . . . 5  |-  ( ( log  |`  RR+ )  Isom  <  ,  <  ( RR+ ,  RR ) 
<->  ( ( log  |`  RR+ ) : RR+
-1-1-onto-> RR  /\  A. x  e.  RR+  A. y  e.  RR+  ( x  <  y  <->  ( ( log  |`  RR+ ) `  x
)  <  ( ( log  |`  RR+ ) `  y
) ) ) )
31, 2mpbi 208 . . . 4  |-  ( ( log  |`  RR+ ) :
RR+
-1-1-onto-> RR  /\  A. x  e.  RR+  A. y  e.  RR+  ( x  <  y  <->  ( ( log  |`  RR+ ) `  x
)  <  ( ( log  |`  RR+ ) `  y
) ) )
43simpri 459 . . 3  |-  A. x  e.  RR+  A. y  e.  RR+  ( x  <  y  <->  ( ( log  |`  RR+ ) `  x )  <  (
( log  |`  RR+ ) `  y ) )
5 breq1 4285 . . . . 5  |-  ( x  =  A  ->  (
x  <  y  <->  A  <  y ) )
6 fveq2 5681 . . . . . 6  |-  ( x  =  A  ->  (
( log  |`  RR+ ) `  x )  =  ( ( log  |`  RR+ ) `  A ) )
76breq1d 4292 . . . . 5  |-  ( x  =  A  ->  (
( ( log  |`  RR+ ) `  x )  <  (
( log  |`  RR+ ) `  y )  <->  ( ( log  |`  RR+ ) `  A
)  <  ( ( log  |`  RR+ ) `  y
) ) )
85, 7bibi12d 321 . . . 4  |-  ( x  =  A  ->  (
( x  <  y  <->  ( ( log  |`  RR+ ) `  x )  <  (
( log  |`  RR+ ) `  y ) )  <->  ( A  <  y  <->  ( ( log  |`  RR+ ) `  A
)  <  ( ( log  |`  RR+ ) `  y
) ) ) )
9 breq2 4286 . . . . 5  |-  ( y  =  B  ->  ( A  <  y  <->  A  <  B ) )
10 fveq2 5681 . . . . . 6  |-  ( y  =  B  ->  (
( log  |`  RR+ ) `  y )  =  ( ( log  |`  RR+ ) `  B ) )
1110breq2d 4294 . . . . 5  |-  ( y  =  B  ->  (
( ( log  |`  RR+ ) `  A )  <  (
( log  |`  RR+ ) `  y )  <->  ( ( log  |`  RR+ ) `  A
)  <  ( ( log  |`  RR+ ) `  B
) ) )
129, 11bibi12d 321 . . . 4  |-  ( y  =  B  ->  (
( A  <  y  <->  ( ( log  |`  RR+ ) `  A )  <  (
( log  |`  RR+ ) `  y ) )  <->  ( A  <  B  <->  ( ( log  |`  RR+ ) `  A
)  <  ( ( log  |`  RR+ ) `  B
) ) ) )
138, 12rspc2v 3070 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A. x  e.  RR+  A. y  e.  RR+  ( x  < 
y  <->  ( ( log  |`  RR+ ) `  x
)  <  ( ( log  |`  RR+ ) `  y
) )  ->  ( A  <  B  <->  ( ( log  |`  RR+ ) `  A
)  <  ( ( log  |`  RR+ ) `  B
) ) ) )
144, 13mpi 17 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  <  B  <->  ( ( log  |`  RR+ ) `  A
)  <  ( ( log  |`  RR+ ) `  B
) ) )
15 fvres 5694 . . 3  |-  ( A  e.  RR+  ->  ( ( log  |`  RR+ ) `  A )  =  ( log `  A ) )
16 fvres 5694 . . 3  |-  ( B  e.  RR+  ->  ( ( log  |`  RR+ ) `  B )  =  ( log `  B ) )
1715, 16breqan12d 4297 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  (
( ( log  |`  RR+ ) `  A )  <  (
( log  |`  RR+ ) `  B )  <->  ( log `  A )  <  ( log `  B ) ) )
1814, 17bitrd 253 1  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  <  B  <->  ( log `  A )  <  ( log `  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1757   A.wral 2707   class class class wbr 4282    |` cres 4831   -1-1-onto->wf1o 5407   ` cfv 5408    Isom wiso 5409   RRcr 9271    < clt 9408   RR+crp 10981   logclog 21893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1671  ax-6 1709  ax-7 1729  ax-8 1759  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2416  ax-rep 4393  ax-sep 4403  ax-nul 4411  ax-pow 4460  ax-pr 4521  ax-un 6363  ax-inf2 7837  ax-cnex 9328  ax-resscn 9329  ax-1cn 9330  ax-icn 9331  ax-addcl 9332  ax-addrcl 9333  ax-mulcl 9334  ax-mulrcl 9335  ax-mulcom 9336  ax-addass 9337  ax-mulass 9338  ax-distr 9339  ax-i2m1 9340  ax-1ne0 9341  ax-1rid 9342  ax-rnegex 9343  ax-rrecex 9344  ax-cnre 9345  ax-pre-lttri 9346  ax-pre-lttrn 9347  ax-pre-ltadd 9348  ax-pre-mulgt0 9349  ax-pre-sup 9350  ax-addf 9351  ax-mulf 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1702  df-eu 2260  df-mo 2261  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2966  df-sbc 3178  df-csb 3279  df-dif 3321  df-un 3323  df-in 3325  df-ss 3332  df-pss 3334  df-nul 3628  df-if 3782  df-pw 3852  df-sn 3868  df-pr 3870  df-tp 3872  df-op 3874  df-uni 4082  df-int 4119  df-iun 4163  df-iin 4164  df-br 4283  df-opab 4341  df-mpt 4342  df-tr 4376  df-eprel 4621  df-id 4625  df-po 4630  df-so 4631  df-fr 4668  df-se 4669  df-we 4670  df-ord 4711  df-on 4712  df-lim 4713  df-suc 4714  df-xp 4835  df-rel 4836  df-cnv 4837  df-co 4838  df-dm 4839  df-rn 4840  df-res 4841  df-ima 4842  df-iota 5371  df-fun 5410  df-fn 5411  df-f 5412  df-f1 5413  df-fo 5414  df-f1o 5415  df-fv 5416  df-isom 5417  df-riota 6041  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-of 6311  df-om 6468  df-1st 6568  df-2nd 6569  df-supp 6682  df-recs 6820  df-rdg 6854  df-1o 6910  df-2o 6911  df-oadd 6914  df-er 7091  df-map 7206  df-pm 7207  df-ixp 7254  df-en 7301  df-dom 7302  df-sdom 7303  df-fin 7304  df-fsupp 7611  df-fi 7651  df-sup 7681  df-oi 7714  df-card 8099  df-cda 8327  df-pnf 9410  df-mnf 9411  df-xr 9412  df-ltxr 9413  df-le 9414  df-sub 9587  df-neg 9588  df-div 9984  df-nn 10313  df-2 10370  df-3 10371  df-4 10372  df-5 10373  df-6 10374  df-7 10375  df-8 10376  df-9 10377  df-10 10378  df-n0 10570  df-z 10637  df-dec 10746  df-uz 10852  df-q 10944  df-rp 10982  df-xneg 11079  df-xadd 11080  df-xmul 11081  df-ioo 11294  df-ioc 11295  df-ico 11296  df-icc 11297  df-fz 11427  df-fzo 11535  df-fl 11628  df-mod 11695  df-seq 11793  df-exp 11852  df-fac 12038  df-bc 12065  df-hash 12090  df-shft 12542  df-cj 12574  df-re 12575  df-im 12576  df-sqr 12710  df-abs 12711  df-limsup 12935  df-clim 12952  df-rlim 12953  df-sum 13150  df-ef 13338  df-sin 13340  df-cos 13341  df-pi 13343  df-struct 14161  df-ndx 14162  df-slot 14163  df-base 14164  df-sets 14165  df-ress 14166  df-plusg 14236  df-mulr 14237  df-starv 14238  df-sca 14239  df-vsca 14240  df-ip 14241  df-tset 14242  df-ple 14243  df-ds 14245  df-unif 14246  df-hom 14247  df-cco 14248  df-rest 14346  df-topn 14347  df-0g 14365  df-gsum 14366  df-topgen 14367  df-pt 14368  df-prds 14371  df-xrs 14425  df-qtop 14430  df-imas 14431  df-xps 14433  df-mre 14509  df-mrc 14510  df-acs 14512  df-mnd 15400  df-submnd 15450  df-mulg 15530  df-cntz 15817  df-cmn 16261  df-psmet 17655  df-xmet 17656  df-met 17657  df-bl 17658  df-mopn 17659  df-fbas 17660  df-fg 17661  df-cnfld 17665  df-top 18347  df-bases 18349  df-topon 18350  df-topsp 18351  df-cld 18467  df-ntr 18468  df-cls 18469  df-nei 18546  df-lp 18584  df-perf 18585  df-cn 18675  df-cnp 18676  df-haus 18763  df-tx 18979  df-hmeo 19172  df-fil 19263  df-fm 19355  df-flim 19356  df-flf 19357  df-xms 19739  df-ms 19740  df-tms 19741  df-cncf 20298  df-limc 21185  df-dv 21186  df-log 21895
This theorem is referenced by:  logleb  21939  rplogcl  21940  cxploglim2  22259  emcllem4  22279  chtub  22438  chpub  22446  chebbnd1lem1  22605  chebbnd1lem2  22606  chebbnd1  22608  pntlemb  22733  pntlemh  22735  ostth3  22774  xrge0iifiso  26221  logblt  26321  reglogltb  29079  reglogleb  29080
  Copyright terms: Public domain W3C validator