MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logfacubnd Structured version   Unicode version

Theorem logfacubnd 23252
Description: A simple upper bound on the logarithm of a factorial. (Contributed by Mario Carneiro, 16-Apr-2016.)
Assertion
Ref Expression
logfacubnd  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( log `  ( ! `  ( |_ `  A ) ) )  <_  ( A  x.  ( log `  A ) ) )

Proof of Theorem logfacubnd
StepHypRef Expression
1 rpre 11226 . . . . . . 7  |-  ( A  e.  RR+  ->  A  e.  RR )
2 flge1nn 11923 . . . . . . 7  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( |_ `  A
)  e.  NN )
31, 2sylan 471 . . . . . 6  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( |_ `  A )  e.  NN )
43nnnn0d 10852 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( |_ `  A )  e. 
NN0 )
5 faccl 12331 . . . . 5  |-  ( ( |_ `  A )  e.  NN0  ->  ( ! `
 ( |_ `  A ) )  e.  NN )
64, 5syl 16 . . . 4  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( ! `  ( |_ `  A ) )  e.  NN )
76nnrpd 11255 . . 3  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( ! `  ( |_ `  A ) )  e.  RR+ )
87relogcld 22764 . 2  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( log `  ( ! `  ( |_ `  A ) ) )  e.  RR )
91adantr 465 . . . 4  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  A  e.  RR )
10 reflcl 11901 . . . 4  |-  ( A  e.  RR  ->  ( |_ `  A )  e.  RR )
119, 10syl 16 . . 3  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( |_ `  A )  e.  RR )
123nnrpd 11255 . . . 4  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( |_ `  A )  e.  RR+ )
1312relogcld 22764 . . 3  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( log `  ( |_ `  A ) )  e.  RR )
1411, 13remulcld 9624 . 2  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( |_ `  A
)  x.  ( log `  ( |_ `  A
) ) )  e.  RR )
15 relogcl 22719 . . . 4  |-  ( A  e.  RR+  ->  ( log `  A )  e.  RR )
1615adantr 465 . . 3  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( log `  A )  e.  RR )
179, 16remulcld 9624 . 2  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( A  x.  ( log `  A ) )  e.  RR )
18 facubnd 12346 . . . . 5  |-  ( ( |_ `  A )  e.  NN0  ->  ( ! `
 ( |_ `  A ) )  <_ 
( ( |_ `  A ) ^ ( |_ `  A ) ) )
194, 18syl 16 . . . 4  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( ! `  ( |_ `  A ) )  <_ 
( ( |_ `  A ) ^ ( |_ `  A ) ) )
203, 4nnexpcld 12299 . . . . . 6  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( |_ `  A
) ^ ( |_
`  A ) )  e.  NN )
2120nnrpd 11255 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( |_ `  A
) ^ ( |_
`  A ) )  e.  RR+ )
227, 21logled 22768 . . . 4  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( ! `  ( |_ `  A ) )  <_  ( ( |_
`  A ) ^
( |_ `  A
) )  <->  ( log `  ( ! `  ( |_ `  A ) ) )  <_  ( log `  ( ( |_ `  A ) ^ ( |_ `  A ) ) ) ) )
2319, 22mpbid 210 . . 3  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( log `  ( ! `  ( |_ `  A ) ) )  <_  ( log `  ( ( |_
`  A ) ^
( |_ `  A
) ) ) )
243nnzd 10965 . . . 4  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( |_ `  A )  e.  ZZ )
25 relogexp 22736 . . . 4  |-  ( ( ( |_ `  A
)  e.  RR+  /\  ( |_ `  A )  e.  ZZ )  ->  ( log `  ( ( |_
`  A ) ^
( |_ `  A
) ) )  =  ( ( |_ `  A )  x.  ( log `  ( |_ `  A ) ) ) )
2612, 24, 25syl2anc 661 . . 3  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( log `  ( ( |_
`  A ) ^
( |_ `  A
) ) )  =  ( ( |_ `  A )  x.  ( log `  ( |_ `  A ) ) ) )
2723, 26breqtrd 4471 . 2  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( log `  ( ! `  ( |_ `  A ) ) )  <_  (
( |_ `  A
)  x.  ( log `  ( |_ `  A
) ) ) )
28 flle 11904 . . . 4  |-  ( A  e.  RR  ->  ( |_ `  A )  <_  A )
299, 28syl 16 . . 3  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( |_ `  A )  <_  A )
30 simpl 457 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  A  e.  RR+ )
3112, 30logled 22768 . . . 4  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( |_ `  A
)  <_  A  <->  ( log `  ( |_ `  A
) )  <_  ( log `  A ) ) )
3229, 31mpbid 210 . . 3  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( log `  ( |_ `  A ) )  <_ 
( log `  A
) )
3312rprege0d 11263 . . . 4  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( |_ `  A
)  e.  RR  /\  0  <_  ( |_ `  A ) ) )
34 log1 22726 . . . . . 6  |-  ( log `  1 )  =  0
353nnge1d 10578 . . . . . . 7  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  1  <_  ( |_ `  A
) )
36 1rp 11224 . . . . . . . 8  |-  1  e.  RR+
37 logleb 22744 . . . . . . . 8  |-  ( ( 1  e.  RR+  /\  ( |_ `  A )  e.  RR+ )  ->  ( 1  <_  ( |_ `  A )  <->  ( log `  1 )  <_  ( log `  ( |_ `  A ) ) ) )
3836, 12, 37sylancr 663 . . . . . . 7  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
1  <_  ( |_ `  A )  <->  ( log `  1 )  <_  ( log `  ( |_ `  A ) ) ) )
3935, 38mpbid 210 . . . . . 6  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( log `  1 )  <_ 
( log `  ( |_ `  A ) ) )
4034, 39syl5eqbrr 4481 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  0  <_  ( log `  ( |_ `  A ) ) )
4113, 40jca 532 . . . 4  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( log `  ( |_ `  A ) )  e.  RR  /\  0  <_  ( log `  ( |_ `  A ) ) ) )
42 lemul12a 10400 . . . 4  |-  ( ( ( ( ( |_
`  A )  e.  RR  /\  0  <_ 
( |_ `  A
) )  /\  A  e.  RR )  /\  (
( ( log `  ( |_ `  A ) )  e.  RR  /\  0  <_  ( log `  ( |_ `  A ) ) )  /\  ( log `  A )  e.  RR ) )  ->  (
( ( |_ `  A )  <_  A  /\  ( log `  ( |_ `  A ) )  <_  ( log `  A
) )  ->  (
( |_ `  A
)  x.  ( log `  ( |_ `  A
) ) )  <_ 
( A  x.  ( log `  A ) ) ) )
4333, 9, 41, 16, 42syl22anc 1229 . . 3  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( ( |_ `  A )  <_  A  /\  ( log `  ( |_ `  A ) )  <_  ( log `  A
) )  ->  (
( |_ `  A
)  x.  ( log `  ( |_ `  A
) ) )  <_ 
( A  x.  ( log `  A ) ) ) )
4429, 32, 43mp2and 679 . 2  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( |_ `  A
)  x.  ( log `  ( |_ `  A
) ) )  <_ 
( A  x.  ( log `  A ) ) )
458, 14, 17, 27, 44letrd 9738 1  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( log `  ( ! `  ( |_ `  A ) ) )  <_  ( A  x.  ( log `  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   class class class wbr 4447   ` cfv 5588  (class class class)co 6284   RRcr 9491   0cc0 9492   1c1 9493    x. cmul 9497    <_ cle 9629   NNcn 10536   NN0cn0 10795   ZZcz 10864   RR+crp 11220   |_cfl 11895   ^cexp 12134   !cfa 12321   logclog 22698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571  ax-mulf 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-fi 7871  df-sup 7901  df-oi 7935  df-card 8320  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-q 11183  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-ioo 11533  df-ioc 11534  df-ico 11535  df-icc 11536  df-fz 11673  df-fzo 11793  df-fl 11897  df-mod 11965  df-seq 12076  df-exp 12135  df-fac 12322  df-bc 12349  df-hash 12374  df-shft 12863  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-limsup 13257  df-clim 13274  df-rlim 13275  df-sum 13472  df-ef 13665  df-sin 13667  df-cos 13668  df-pi 13670  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-mulr 14569  df-starv 14570  df-sca 14571  df-vsca 14572  df-ip 14573  df-tset 14574  df-ple 14575  df-ds 14577  df-unif 14578  df-hom 14579  df-cco 14580  df-rest 14678  df-topn 14679  df-0g 14697  df-gsum 14698  df-topgen 14699  df-pt 14700  df-prds 14703  df-xrs 14757  df-qtop 14762  df-imas 14763  df-xps 14765  df-mre 14841  df-mrc 14842  df-acs 14844  df-mnd 15732  df-submnd 15787  df-mulg 15870  df-cntz 16160  df-cmn 16606  df-psmet 18210  df-xmet 18211  df-met 18212  df-bl 18213  df-mopn 18214  df-fbas 18215  df-fg 18216  df-cnfld 18220  df-top 19194  df-bases 19196  df-topon 19197  df-topsp 19198  df-cld 19314  df-ntr 19315  df-cls 19316  df-nei 19393  df-lp 19431  df-perf 19432  df-cn 19522  df-cnp 19523  df-haus 19610  df-tx 19826  df-hmeo 20019  df-fil 20110  df-fm 20202  df-flim 20203  df-flf 20204  df-xms 20586  df-ms 20587  df-tms 20588  df-cncf 21145  df-limc 22033  df-dv 22034  df-log 22700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator