MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logfaclbnd Structured version   Unicode version

Theorem logfaclbnd 23695
Description: A lower bound on the logarithm of a factorial. (Contributed by Mario Carneiro, 16-Apr-2016.)
Assertion
Ref Expression
logfaclbnd  |-  ( A  e.  RR+  ->  ( A  x.  ( ( log `  A )  -  2 ) )  <_  ( log `  ( ! `  ( |_ `  A ) ) ) )

Proof of Theorem logfaclbnd
Dummy variables  d  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpcn 11229 . . . . 5  |-  ( A  e.  RR+  ->  A  e.  CC )
21times2d 10778 . . . 4  |-  ( A  e.  RR+  ->  ( A  x.  2 )  =  ( A  +  A
) )
32oveq2d 6286 . . 3  |-  ( A  e.  RR+  ->  ( ( A  x.  ( log `  A ) )  -  ( A  x.  2
) )  =  ( ( A  x.  ( log `  A ) )  -  ( A  +  A ) ) )
4 relogcl 23129 . . . . 5  |-  ( A  e.  RR+  ->  ( log `  A )  e.  RR )
54recnd 9611 . . . 4  |-  ( A  e.  RR+  ->  ( log `  A )  e.  CC )
6 2cnd 10604 . . . 4  |-  ( A  e.  RR+  ->  2  e.  CC )
71, 5, 6subdid 10008 . . 3  |-  ( A  e.  RR+  ->  ( A  x.  ( ( log `  A )  -  2 ) )  =  ( ( A  x.  ( log `  A ) )  -  ( A  x.  2 ) ) )
8 rpre 11227 . . . . . 6  |-  ( A  e.  RR+  ->  A  e.  RR )
98, 4remulcld 9613 . . . . 5  |-  ( A  e.  RR+  ->  ( A  x.  ( log `  A
) )  e.  RR )
109recnd 9611 . . . 4  |-  ( A  e.  RR+  ->  ( A  x.  ( log `  A
) )  e.  CC )
1110, 1, 1subsub4d 9953 . . 3  |-  ( A  e.  RR+  ->  ( ( ( A  x.  ( log `  A ) )  -  A )  -  A )  =  ( ( A  x.  ( log `  A ) )  -  ( A  +  A ) ) )
123, 7, 113eqtr4d 2505 . 2  |-  ( A  e.  RR+  ->  ( A  x.  ( ( log `  A )  -  2 ) )  =  ( ( ( A  x.  ( log `  A ) )  -  A )  -  A ) )
139, 8resubcld 9983 . . . 4  |-  ( A  e.  RR+  ->  ( ( A  x.  ( log `  A ) )  -  A )  e.  RR )
14 fzfid 12065 . . . . 5  |-  ( A  e.  RR+  ->  ( 1 ... ( |_ `  A ) )  e. 
Fin )
15 fzfid 12065 . . . . . 6  |-  ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1 ... n )  e. 
Fin )
16 elfznn 11717 . . . . . . . 8  |-  ( d  e.  ( 1 ... n )  ->  d  e.  NN )
1716adantl 464 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e.  ( 1 ... n ) )  ->  d  e.  NN )
1817nnrecred 10577 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e.  ( 1 ... n ) )  ->  ( 1  /  d )  e.  RR )
1915, 18fsumrecl 13638 . . . . 5  |-  ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ d  e.  ( 1 ... n
) ( 1  / 
d )  e.  RR )
2014, 19fsumrecl 13638 . . . 4  |-  ( A  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) )
sum_ d  e.  ( 1 ... n ) ( 1  /  d
)  e.  RR )
21 rprege0 11235 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <_  A ) )
22 flge0nn0 11936 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( |_ `  A
)  e.  NN0 )
2321, 22syl 16 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( |_
`  A )  e. 
NN0 )
24 faccl 12345 . . . . . . . 8  |-  ( ( |_ `  A )  e.  NN0  ->  ( ! `
 ( |_ `  A ) )  e.  NN )
2523, 24syl 16 . . . . . . 7  |-  ( A  e.  RR+  ->  ( ! `
 ( |_ `  A ) )  e.  NN )
2625nnrpd 11257 . . . . . 6  |-  ( A  e.  RR+  ->  ( ! `
 ( |_ `  A ) )  e.  RR+ )
2726relogcld 23176 . . . . 5  |-  ( A  e.  RR+  ->  ( log `  ( ! `  ( |_ `  A ) ) )  e.  RR )
2827, 8readdcld 9612 . . . 4  |-  ( A  e.  RR+  ->  ( ( log `  ( ! `
 ( |_ `  A ) ) )  +  A )  e.  RR )
29 elfznn 11717 . . . . . . . . . 10  |-  ( d  e.  ( 1 ... ( |_ `  A
) )  ->  d  e.  NN )
3029adantl 464 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  NN )
3130nnrecred 10577 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1  /  d )  e.  RR )
3214, 31fsumrecl 13638 . . . . . . 7  |-  ( A  e.  RR+  ->  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d
)  e.  RR )
338, 32remulcld 9613 . . . . . 6  |-  ( A  e.  RR+  ->  ( A  x.  sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  d
) )  e.  RR )
34 reflcl 11914 . . . . . . 7  |-  ( A  e.  RR  ->  ( |_ `  A )  e.  RR )
358, 34syl 16 . . . . . 6  |-  ( A  e.  RR+  ->  ( |_
`  A )  e.  RR )
3633, 35resubcld 9983 . . . . 5  |-  ( A  e.  RR+  ->  ( ( A  x.  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d
) )  -  ( |_ `  A ) )  e.  RR )
37 harmoniclbnd 23536 . . . . . . 7  |-  ( A  e.  RR+  ->  ( log `  A )  <_  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d
) )
38 rpregt0 11234 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <  A ) )
39 lemul2 10391 . . . . . . . 8  |-  ( ( ( log `  A
)  e.  RR  /\  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d )  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( ( log `  A
)  <_  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d
)  <->  ( A  x.  ( log `  A ) )  <_  ( A  x.  sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  d
) ) ) )
404, 32, 38, 39syl3anc 1226 . . . . . . 7  |-  ( A  e.  RR+  ->  ( ( log `  A )  <_  sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  d
)  <->  ( A  x.  ( log `  A ) )  <_  ( A  x.  sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  d
) ) ) )
4137, 40mpbid 210 . . . . . 6  |-  ( A  e.  RR+  ->  ( A  x.  ( log `  A
) )  <_  ( A  x.  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d
) ) )
42 flle 11917 . . . . . . 7  |-  ( A  e.  RR  ->  ( |_ `  A )  <_  A )
438, 42syl 16 . . . . . 6  |-  ( A  e.  RR+  ->  ( |_
`  A )  <_  A )
449, 35, 33, 8, 41, 43le2subd 10167 . . . . 5  |-  ( A  e.  RR+  ->  ( ( A  x.  ( log `  A ) )  -  A )  <_  (
( A  x.  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d ) )  -  ( |_
`  A ) ) )
4529nnrecred 10577 . . . . . . . . 9  |-  ( d  e.  ( 1 ... ( |_ `  A
) )  ->  (
1  /  d )  e.  RR )
46 remulcl 9566 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( 1  /  d
)  e.  RR )  ->  ( A  x.  ( 1  /  d
) )  e.  RR )
478, 45, 46syl2an 475 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( A  x.  ( 1  /  d
) )  e.  RR )
48 peano2rem 9877 . . . . . . . 8  |-  ( ( A  x.  ( 1  /  d ) )  e.  RR  ->  (
( A  x.  (
1  /  d ) )  -  1 )  e.  RR )
4947, 48syl 16 . . . . . . 7  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( A  x.  ( 1  /  d ) )  -  1 )  e.  RR )
50 fzfid 12065 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( d ... ( |_ `  A
) )  e.  Fin )
5131adantr 463 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  n  e.  ( d ... ( |_
`  A ) ) )  ->  ( 1  /  d )  e.  RR )
5250, 51fsumrecl 13638 . . . . . . 7  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ n  e.  ( d ... ( |_ `  A ) ) ( 1  /  d
)  e.  RR )
538adantr 463 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  A  e.  RR )
5453, 34syl 16 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( |_ `  A )  e.  RR )
55 peano2re 9742 . . . . . . . . . . 11  |-  ( ( |_ `  A )  e.  RR  ->  (
( |_ `  A
)  +  1 )  e.  RR )
5654, 55syl 16 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( |_ `  A )  +  1 )  e.  RR )
5730nnred 10546 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  RR )
58 fllep1 11919 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  A  <_  ( ( |_ `  A )  +  1 ) )
598, 58syl 16 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  A  <_ 
( ( |_ `  A )  +  1 ) )
6059adantr 463 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  A  <_  ( ( |_ `  A
)  +  1 ) )
6153, 56, 57, 60lesub1dd 10164 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( A  -  d )  <_ 
( ( ( |_
`  A )  +  1 )  -  d
) )
6253, 57resubcld 9983 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( A  -  d )  e.  RR )
6356, 57resubcld 9983 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
( |_ `  A
)  +  1 )  -  d )  e.  RR )
6430nnrpd 11257 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  RR+ )
6564rpreccld 11269 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1  /  d )  e.  RR+ )
6662, 63, 65lemul1d 11298 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( A  -  d )  <_  ( ( ( |_
`  A )  +  1 )  -  d
)  <->  ( ( A  -  d )  x.  ( 1  /  d
) )  <_  (
( ( ( |_
`  A )  +  1 )  -  d
)  x.  ( 1  /  d ) ) ) )
6761, 66mpbid 210 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( A  -  d )  x.  ( 1  /  d
) )  <_  (
( ( ( |_
`  A )  +  1 )  -  d
)  x.  ( 1  /  d ) ) )
681adantr 463 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  A  e.  CC )
6930nncnd 10547 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  CC )
7031recnd 9611 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1  /  d )  e.  CC )
7168, 69, 70subdird 10009 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( A  -  d )  x.  ( 1  /  d
) )  =  ( ( A  x.  (
1  /  d ) )  -  ( d  x.  ( 1  / 
d ) ) ) )
7230nnne0d 10576 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  =/=  0 )
7369, 72recidd 10311 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( d  x.  ( 1  /  d
) )  =  1 )
7473oveq2d 6286 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( A  x.  ( 1  /  d ) )  -  ( d  x.  ( 1  /  d
) ) )  =  ( ( A  x.  ( 1  /  d
) )  -  1 ) )
7571, 74eqtr2d 2496 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( A  x.  ( 1  /  d ) )  -  1 )  =  ( ( A  -  d )  x.  (
1  /  d ) ) )
76 fsumconst 13687 . . . . . . . . . 10  |-  ( ( ( d ... ( |_ `  A ) )  e.  Fin  /\  (
1  /  d )  e.  CC )  ->  sum_ n  e.  ( d ... ( |_ `  A ) ) ( 1  /  d )  =  ( ( # `  ( d ... ( |_ `  A ) ) )  x.  ( 1  /  d ) ) )
7750, 70, 76syl2anc 659 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ n  e.  ( d ... ( |_ `  A ) ) ( 1  /  d
)  =  ( (
# `  ( d ... ( |_ `  A
) ) )  x.  ( 1  /  d
) ) )
78 elfzuz3 11688 . . . . . . . . . . . . 13  |-  ( d  e.  ( 1 ... ( |_ `  A
) )  ->  ( |_ `  A )  e.  ( ZZ>= `  d )
)
7978adantl 464 . . . . . . . . . . . 12  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( |_ `  A )  e.  (
ZZ>= `  d ) )
80 hashfz 12469 . . . . . . . . . . . 12  |-  ( ( |_ `  A )  e.  ( ZZ>= `  d
)  ->  ( # `  (
d ... ( |_ `  A ) ) )  =  ( ( ( |_ `  A )  -  d )  +  1 ) )
8179, 80syl 16 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( # `  (
d ... ( |_ `  A ) ) )  =  ( ( ( |_ `  A )  -  d )  +  1 ) )
8235recnd 9611 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  ( |_
`  A )  e.  CC )
8382adantr 463 . . . . . . . . . . . 12  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( |_ `  A )  e.  CC )
84 1cnd 9601 . . . . . . . . . . . 12  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  1  e.  CC )
8583, 84, 69addsubd 9943 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
( |_ `  A
)  +  1 )  -  d )  =  ( ( ( |_
`  A )  -  d )  +  1 ) )
8681, 85eqtr4d 2498 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( # `  (
d ... ( |_ `  A ) ) )  =  ( ( ( |_ `  A )  +  1 )  -  d ) )
8786oveq1d 6285 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( # `
 ( d ... ( |_ `  A
) ) )  x.  ( 1  /  d
) )  =  ( ( ( ( |_
`  A )  +  1 )  -  d
)  x.  ( 1  /  d ) ) )
8877, 87eqtrd 2495 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ n  e.  ( d ... ( |_ `  A ) ) ( 1  /  d
)  =  ( ( ( ( |_ `  A )  +  1 )  -  d )  x.  ( 1  / 
d ) ) )
8967, 75, 883brtr4d 4469 . . . . . . 7  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( A  x.  ( 1  /  d ) )  -  1 )  <_  sum_ n  e.  ( d ... ( |_ `  A ) ) ( 1  /  d ) )
9014, 49, 52, 89fsumle 13695 . . . . . 6  |-  ( A  e.  RR+  ->  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( A  x.  ( 1  /  d
) )  -  1 )  <_  sum_ d  e.  ( 1 ... ( |_ `  A ) )
sum_ n  e.  (
d ... ( |_ `  A ) ) ( 1  /  d ) )
9114, 1, 70fsummulc2 13681 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( A  x.  sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  d
) )  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( A  x.  ( 1  /  d ) ) )
92 ax-1cn 9539 . . . . . . . . . 10  |-  1  e.  CC
93 fsumconst 13687 . . . . . . . . . 10  |-  ( ( ( 1 ... ( |_ `  A ) )  e.  Fin  /\  1  e.  CC )  ->  sum_ d  e.  ( 1 ... ( |_ `  A ) ) 1  =  ( (
# `  ( 1 ... ( |_ `  A
) ) )  x.  1 ) )
9414, 92, 93sylancl 660 . . . . . . . . 9  |-  ( A  e.  RR+  ->  sum_ d  e.  ( 1 ... ( |_ `  A ) ) 1  =  ( (
# `  ( 1 ... ( |_ `  A
) ) )  x.  1 ) )
95 hashfz1 12401 . . . . . . . . . . 11  |-  ( ( |_ `  A )  e.  NN0  ->  ( # `  ( 1 ... ( |_ `  A ) ) )  =  ( |_
`  A ) )
9623, 95syl 16 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  ( # `  ( 1 ... ( |_ `  A ) ) )  =  ( |_
`  A ) )
9796oveq1d 6285 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( (
# `  ( 1 ... ( |_ `  A
) ) )  x.  1 )  =  ( ( |_ `  A
)  x.  1 ) )
9882mulid1d 9602 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( ( |_ `  A )  x.  1 )  =  ( |_ `  A
) )
9994, 97, 983eqtrrd 2500 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( |_
`  A )  = 
sum_ d  e.  ( 1 ... ( |_
`  A ) ) 1 )
10091, 99oveq12d 6288 . . . . . . 7  |-  ( A  e.  RR+  ->  ( ( A  x.  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d
) )  -  ( |_ `  A ) )  =  ( sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( A  x.  (
1  /  d ) )  -  sum_ d  e.  ( 1 ... ( |_ `  A ) ) 1 ) )
10147recnd 9611 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( A  x.  ( 1  /  d
) )  e.  CC )
10214, 101, 84fsumsub 13685 . . . . . . 7  |-  ( A  e.  RR+  ->  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( A  x.  ( 1  /  d
) )  -  1 )  =  ( sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( A  x.  ( 1  /  d ) )  -  sum_ d  e.  ( 1 ... ( |_
`  A ) ) 1 ) )
103100, 102eqtr4d 2498 . . . . . 6  |-  ( A  e.  RR+  ->  ( ( A  x.  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d
) )  -  ( |_ `  A ) )  =  sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( ( A  x.  ( 1  /  d
) )  -  1 ) )
104 eqid 2454 . . . . . . . . . . . . . 14  |-  ( ZZ>= ` 
1 )  =  (
ZZ>= `  1 )
105104uztrn2 11099 . . . . . . . . . . . . 13  |-  ( ( d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
)  ->  n  e.  ( ZZ>= `  1 )
)
106105adantl 464 . . . . . . . . . . . 12  |-  ( ( A  e.  RR+  /\  (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
) )  ->  n  e.  ( ZZ>= `  1 )
)
107106biantrurd 506 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
) )  ->  (
( |_ `  A
)  e.  ( ZZ>= `  n )  <->  ( n  e.  ( ZZ>= `  1 )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) ) )
108 uzss 11102 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  d
)  ->  ( ZZ>= `  n )  C_  ( ZZ>=
`  d ) )
109108ad2antll 726 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR+  /\  (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
) )  ->  ( ZZ>=
`  n )  C_  ( ZZ>= `  d )
)
110109sseld 3488 . . . . . . . . . . . 12  |-  ( ( A  e.  RR+  /\  (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
) )  ->  (
( |_ `  A
)  e.  ( ZZ>= `  n )  ->  ( |_ `  A )  e.  ( ZZ>= `  d )
) )
111110pm4.71rd 633 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
) )  ->  (
( |_ `  A
)  e.  ( ZZ>= `  n )  <->  ( ( |_ `  A )  e.  ( ZZ>= `  d )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) ) )
112107, 111bitr3d 255 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
) )  ->  (
( n  e.  (
ZZ>= `  1 )  /\  ( |_ `  A )  e.  ( ZZ>= `  n
) )  <->  ( ( |_ `  A )  e.  ( ZZ>= `  d )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) ) )
113112pm5.32da 639 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( ( ( d  e.  (
ZZ>= `  1 )  /\  n  e.  ( ZZ>= `  d ) )  /\  ( n  e.  ( ZZ>=
`  1 )  /\  ( |_ `  A )  e.  ( ZZ>= `  n
) ) )  <->  ( (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
)  /\  ( ( |_ `  A )  e.  ( ZZ>= `  d )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) ) ) )
114 ancom 448 . . . . . . . . 9  |-  ( ( ( n  e.  (
ZZ>= `  1 )  /\  ( |_ `  A )  e.  ( ZZ>= `  n
) )  /\  (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
) )  <->  ( (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
)  /\  ( n  e.  ( ZZ>= `  1 )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) ) )
115 an4 822 . . . . . . . . 9  |-  ( ( ( d  e.  (
ZZ>= `  1 )  /\  ( |_ `  A )  e.  ( ZZ>= `  d
) )  /\  (
n  e.  ( ZZ>= `  d )  /\  ( |_ `  A )  e.  ( ZZ>= `  n )
) )  <->  ( (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
)  /\  ( ( |_ `  A )  e.  ( ZZ>= `  d )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) ) )
116113, 114, 1153bitr4g 288 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( ( ( n  e.  (
ZZ>= `  1 )  /\  ( |_ `  A )  e.  ( ZZ>= `  n
) )  /\  (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
) )  <->  ( (
d  e.  ( ZZ>= ` 
1 )  /\  ( |_ `  A )  e.  ( ZZ>= `  d )
)  /\  ( n  e.  ( ZZ>= `  d )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) ) ) )
117 elfzuzb 11685 . . . . . . . . 9  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  <->  ( n  e.  ( ZZ>= `  1 )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) )
118 elfzuzb 11685 . . . . . . . . 9  |-  ( d  e.  ( 1 ... n )  <->  ( d  e.  ( ZZ>= `  1 )  /\  n  e.  ( ZZ>=
`  d ) ) )
119117, 118anbi12i 695 . . . . . . . 8  |-  ( ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  ( 1 ... n ) )  <-> 
( ( n  e.  ( ZZ>= `  1 )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) )  /\  ( d  e.  (
ZZ>= `  1 )  /\  n  e.  ( ZZ>= `  d ) ) ) )
120 elfzuzb 11685 . . . . . . . . 9  |-  ( d  e.  ( 1 ... ( |_ `  A
) )  <->  ( d  e.  ( ZZ>= `  1 )  /\  ( |_ `  A
)  e.  ( ZZ>= `  d ) ) )
121 elfzuzb 11685 . . . . . . . . 9  |-  ( n  e.  ( d ... ( |_ `  A
) )  <->  ( n  e.  ( ZZ>= `  d )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) )
122120, 121anbi12i 695 . . . . . . . 8  |-  ( ( d  e.  ( 1 ... ( |_ `  A ) )  /\  n  e.  ( d ... ( |_ `  A
) ) )  <->  ( (
d  e.  ( ZZ>= ` 
1 )  /\  ( |_ `  A )  e.  ( ZZ>= `  d )
)  /\  ( n  e.  ( ZZ>= `  d )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) ) )
123116, 119, 1223bitr4g 288 . . . . . . 7  |-  ( A  e.  RR+  ->  ( ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  ( 1 ... n ) )  <-> 
( d  e.  ( 1 ... ( |_
`  A ) )  /\  n  e.  ( d ... ( |_
`  A ) ) ) ) )
12418recnd 9611 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e.  ( 1 ... n ) )  ->  ( 1  /  d )  e.  CC )
125124anasss 645 . . . . . . 7  |-  ( ( A  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  ( 1 ... n ) ) )  ->  ( 1  /  d )  e.  CC )
12614, 14, 15, 123, 125fsumcom2 13671 . . . . . 6  |-  ( A  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) )
sum_ d  e.  ( 1 ... n ) ( 1  /  d
)  =  sum_ d  e.  ( 1 ... ( |_ `  A ) )
sum_ n  e.  (
d ... ( |_ `  A ) ) ( 1  /  d ) )
12790, 103, 1263brtr4d 4469 . . . . 5  |-  ( A  e.  RR+  ->  ( ( A  x.  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d
) )  -  ( |_ `  A ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  A ) )
sum_ d  e.  ( 1 ... n ) ( 1  /  d
) )
12813, 36, 20, 44, 127letrd 9728 . . . 4  |-  ( A  e.  RR+  ->  ( ( A  x.  ( log `  A ) )  -  A )  <_  sum_ n  e.  ( 1 ... ( |_ `  A ) )
sum_ d  e.  ( 1 ... n ) ( 1  /  d
) )
12927, 35readdcld 9612 . . . . 5  |-  ( A  e.  RR+  ->  ( ( log `  ( ! `
 ( |_ `  A ) ) )  +  ( |_ `  A ) )  e.  RR )
130 elfznn 11717 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  e.  NN )
131130adantl 464 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  NN )
132131nnrpd 11257 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  RR+ )
133132relogcld 23176 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( log `  n )  e.  RR )
134 peano2re 9742 . . . . . . . 8  |-  ( ( log `  n )  e.  RR  ->  (
( log `  n
)  +  1 )  e.  RR )
135133, 134syl 16 . . . . . . 7  |-  ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( log `  n )  +  1 )  e.  RR )
136 nnz 10882 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  n  e.  ZZ )
137 flid 11926 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  ( |_ `  n )  =  n )
138136, 137syl 16 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  ( |_ `  n )  =  n )
139138oveq2d 6286 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
1 ... ( |_ `  n ) )  =  ( 1 ... n
) )
140139sumeq1d 13605 . . . . . . . . 9  |-  ( n  e.  NN  ->  sum_ d  e.  ( 1 ... ( |_ `  n ) ) ( 1  /  d
)  =  sum_ d  e.  ( 1 ... n
) ( 1  / 
d ) )
141 nnre 10538 . . . . . . . . . 10  |-  ( n  e.  NN  ->  n  e.  RR )
142 nnge1 10557 . . . . . . . . . 10  |-  ( n  e.  NN  ->  1  <_  n )
143 harmonicubnd 23537 . . . . . . . . . 10  |-  ( ( n  e.  RR  /\  1  <_  n )  ->  sum_ d  e.  ( 1 ... ( |_ `  n ) ) ( 1  /  d )  <_  ( ( log `  n )  +  1 ) )
144141, 142, 143syl2anc 659 . . . . . . . . 9  |-  ( n  e.  NN  ->  sum_ d  e.  ( 1 ... ( |_ `  n ) ) ( 1  /  d
)  <_  ( ( log `  n )  +  1 ) )
145140, 144eqbrtrrd 4461 . . . . . . . 8  |-  ( n  e.  NN  ->  sum_ d  e.  ( 1 ... n
) ( 1  / 
d )  <_  (
( log `  n
)  +  1 ) )
146131, 145syl 16 . . . . . . 7  |-  ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ d  e.  ( 1 ... n
) ( 1  / 
d )  <_  (
( log `  n
)  +  1 ) )
14714, 19, 135, 146fsumle 13695 . . . . . 6  |-  ( A  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) )
sum_ d  e.  ( 1 ... n ) ( 1  /  d
)  <_  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  n
)  +  1 ) )
148133recnd 9611 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( log `  n )  e.  CC )
149 1cnd 9601 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  1  e.  CC )
15014, 148, 149fsumadd 13643 . . . . . . 7  |-  ( A  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  n
)  +  1 )  =  ( sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( log `  n
)  +  sum_ n  e.  ( 1 ... ( |_ `  A ) ) 1 ) )
151 logfac 23154 . . . . . . . . 9  |-  ( ( |_ `  A )  e.  NN0  ->  ( log `  ( ! `  ( |_ `  A ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( log `  n
) )
15223, 151syl 16 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( log `  ( ! `  ( |_ `  A ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( log `  n
) )
153 fsumconst 13687 . . . . . . . . . 10  |-  ( ( ( 1 ... ( |_ `  A ) )  e.  Fin  /\  1  e.  CC )  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) 1  =  ( (
# `  ( 1 ... ( |_ `  A
) ) )  x.  1 ) )
15414, 92, 153sylancl 660 . . . . . . . . 9  |-  ( A  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) 1  =  ( (
# `  ( 1 ... ( |_ `  A
) ) )  x.  1 ) )
155154, 97, 983eqtrrd 2500 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( |_
`  A )  = 
sum_ n  e.  (
1 ... ( |_ `  A ) ) 1 )
156152, 155oveq12d 6288 . . . . . . 7  |-  ( A  e.  RR+  ->  ( ( log `  ( ! `
 ( |_ `  A ) ) )  +  ( |_ `  A ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( log `  n
)  +  sum_ n  e.  ( 1 ... ( |_ `  A ) ) 1 ) )
157150, 156eqtr4d 2498 . . . . . 6  |-  ( A  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  n
)  +  1 )  =  ( ( log `  ( ! `  ( |_ `  A ) ) )  +  ( |_
`  A ) ) )
158147, 157breqtrd 4463 . . . . 5  |-  ( A  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) )
sum_ d  e.  ( 1 ... n ) ( 1  /  d
)  <_  ( ( log `  ( ! `  ( |_ `  A ) ) )  +  ( |_ `  A ) ) )
15935, 8, 27, 43leadd2dd 10163 . . . . 5  |-  ( A  e.  RR+  ->  ( ( log `  ( ! `
 ( |_ `  A ) ) )  +  ( |_ `  A ) )  <_ 
( ( log `  ( ! `  ( |_ `  A ) ) )  +  A ) )
16020, 129, 28, 158, 159letrd 9728 . . . 4  |-  ( A  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) )
sum_ d  e.  ( 1 ... n ) ( 1  /  d
)  <_  ( ( log `  ( ! `  ( |_ `  A ) ) )  +  A
) )
16113, 20, 28, 128, 160letrd 9728 . . 3  |-  ( A  e.  RR+  ->  ( ( A  x.  ( log `  A ) )  -  A )  <_  (
( log `  ( ! `  ( |_ `  A ) ) )  +  A ) )
16213, 8, 27lesubaddd 10145 . . 3  |-  ( A  e.  RR+  ->  ( ( ( ( A  x.  ( log `  A ) )  -  A )  -  A )  <_ 
( log `  ( ! `  ( |_ `  A ) ) )  <-> 
( ( A  x.  ( log `  A ) )  -  A )  <_  ( ( log `  ( ! `  ( |_ `  A ) ) )  +  A ) ) )
163161, 162mpbird 232 . 2  |-  ( A  e.  RR+  ->  ( ( ( A  x.  ( log `  A ) )  -  A )  -  A )  <_  ( log `  ( ! `  ( |_ `  A ) ) ) )
16412, 163eqbrtrd 4459 1  |-  ( A  e.  RR+  ->  ( A  x.  ( ( log `  A )  -  2 ) )  <_  ( log `  ( ! `  ( |_ `  A ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823    C_ wss 3461   class class class wbr 4439   ` cfv 5570  (class class class)co 6270   Fincfn 7509   CCcc 9479   RRcr 9480   0cc0 9481   1c1 9482    + caddc 9484    x. cmul 9486    < clt 9617    <_ cle 9618    - cmin 9796    / cdiv 10202   NNcn 10531   2c2 10581   NN0cn0 10791   ZZcz 10860   ZZ>=cuz 11082   RR+crp 11221   ...cfz 11675   |_cfl 11908   !cfa 12335   #chash 12387   sum_csu 13590   logclog 23108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-map 7414  df-pm 7415  df-ixp 7463  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-fi 7863  df-sup 7893  df-oi 7927  df-card 8311  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-q 11184  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-ioo 11536  df-ioc 11537  df-ico 11538  df-icc 11539  df-fz 11676  df-fzo 11800  df-fl 11910  df-mod 11979  df-seq 12090  df-exp 12149  df-fac 12336  df-bc 12363  df-hash 12388  df-shft 12982  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-limsup 13376  df-clim 13393  df-rlim 13394  df-sum 13591  df-ef 13885  df-e 13886  df-sin 13887  df-cos 13888  df-pi 13890  df-struct 14718  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-mulr 14798  df-starv 14799  df-sca 14800  df-vsca 14801  df-ip 14802  df-tset 14803  df-ple 14804  df-ds 14806  df-unif 14807  df-hom 14808  df-cco 14809  df-rest 14912  df-topn 14913  df-0g 14931  df-gsum 14932  df-topgen 14933  df-pt 14934  df-prds 14937  df-xrs 14991  df-qtop 14996  df-imas 14997  df-xps 14999  df-mre 15075  df-mrc 15076  df-acs 15078  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-submnd 16166  df-mulg 16259  df-cntz 16554  df-cmn 16999  df-psmet 18606  df-xmet 18607  df-met 18608  df-bl 18609  df-mopn 18610  df-fbas 18611  df-fg 18612  df-cnfld 18616  df-top 19566  df-bases 19568  df-topon 19569  df-topsp 19570  df-cld 19687  df-ntr 19688  df-cls 19689  df-nei 19766  df-lp 19804  df-perf 19805  df-cn 19895  df-cnp 19896  df-haus 19983  df-tx 20229  df-hmeo 20422  df-fil 20513  df-fm 20605  df-flim 20606  df-flf 20607  df-xms 20989  df-ms 20990  df-tms 20991  df-cncf 21548  df-limc 22436  df-dv 22437  df-log 23110  df-em 23520
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator