MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logf1o2 Structured version   Unicode version

Theorem logf1o2 22903
Description: The logarithm maps its continuous domain bijectively onto the set of numbers with imaginary part  -u pi  <  Im ( z )  <  pi. The negative reals are mapped to the numbers with imaginary part equal to  pi. (Contributed by Mario Carneiro, 2-May-2015.)
Hypothesis
Ref Expression
logcn.d  |-  D  =  ( CC  \  ( -oo (,] 0 ) )
Assertion
Ref Expression
logf1o2  |-  ( log  |`  D ) : D -1-1-onto-> ( `' Im " ( -u pi (,) pi ) )

Proof of Theorem logf1o2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 logf1o 22824 . . . 4  |-  log :
( CC  \  {
0 } ) -1-1-onto-> ran  log
2 f1of1 5805 . . . 4  |-  ( log
: ( CC  \  { 0 } ) -1-1-onto-> ran 
log  ->  log : ( CC 
\  { 0 } ) -1-1-> ran  log )
31, 2ax-mp 5 . . 3  |-  log :
( CC  \  {
0 } ) -1-1-> ran  log
4 logcn.d . . . 4  |-  D  =  ( CC  \  ( -oo (,] 0 ) )
54logdmss 22895 . . 3  |-  D  C_  ( CC  \  { 0 } )
6 f1ores 5820 . . 3  |-  ( ( log : ( CC 
\  { 0 } ) -1-1-> ran  log  /\  D  C_  ( CC  \  { 0 } ) )  -> 
( log  |`  D ) : D -1-1-onto-> ( log " D
) )
73, 5, 6mp2an 672 . 2  |-  ( log  |`  D ) : D -1-1-onto-> ( log " D )
8 f1ofun 5808 . . . . . . 7  |-  ( log
: ( CC  \  { 0 } ) -1-1-onto-> ran 
log  ->  Fun  log )
91, 8ax-mp 5 . . . . . 6  |-  Fun  log
10 f1of 5806 . . . . . . . . 9  |-  ( log
: ( CC  \  { 0 } ) -1-1-onto-> ran 
log  ->  log : ( CC 
\  { 0 } ) --> ran  log )
111, 10ax-mp 5 . . . . . . . 8  |-  log :
( CC  \  {
0 } ) --> ran 
log
1211fdmi 5726 . . . . . . 7  |-  dom  log  =  ( CC  \  { 0 } )
135, 12sseqtr4i 3522 . . . . . 6  |-  D  C_  dom  log
14 funimass4 5909 . . . . . 6  |-  ( ( Fun  log  /\  D  C_  dom  log )  ->  (
( log " D
)  C_  ( `' Im " ( -u pi (,) pi ) )  <->  A. x  e.  D  ( log `  x )  e.  ( `' Im " ( -u pi (,) pi ) ) ) )
159, 13, 14mp2an 672 . . . . 5  |-  ( ( log " D ) 
C_  ( `' Im " ( -u pi (,) pi ) )  <->  A. x  e.  D  ( log `  x )  e.  ( `' Im " ( -u pi (,) pi ) ) )
164ellogdm 22892 . . . . . . . 8  |-  ( x  e.  D  <->  ( x  e.  CC  /\  ( x  e.  RR  ->  x  e.  RR+ ) ) )
1716simplbi 460 . . . . . . 7  |-  ( x  e.  D  ->  x  e.  CC )
184logdmn0 22893 . . . . . . 7  |-  ( x  e.  D  ->  x  =/=  0 )
1917, 18logcld 22830 . . . . . 6  |-  ( x  e.  D  ->  ( log `  x )  e.  CC )
2019imcld 13007 . . . . . . 7  |-  ( x  e.  D  ->  (
Im `  ( log `  x ) )  e.  RR )
2117, 18logimcld 22831 . . . . . . . 8  |-  ( x  e.  D  ->  ( -u pi  <  ( Im
`  ( log `  x
) )  /\  (
Im `  ( log `  x ) )  <_  pi ) )
2221simpld 459 . . . . . . 7  |-  ( x  e.  D  ->  -u pi  <  ( Im `  ( log `  x ) ) )
234logdmnrp 22894 . . . . . . . . . 10  |-  ( x  e.  D  ->  -.  -u x  e.  RR+ )
24 lognegb 22846 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  x  =/=  0 )  -> 
( -u x  e.  RR+  <->  (
Im `  ( log `  x ) )  =  pi ) )
2517, 18, 24syl2anc 661 . . . . . . . . . . 11  |-  ( x  e.  D  ->  ( -u x  e.  RR+  <->  ( Im `  ( log `  x
) )  =  pi ) )
2625necon3bbid 2690 . . . . . . . . . 10  |-  ( x  e.  D  ->  ( -.  -u x  e.  RR+  <->  (
Im `  ( log `  x ) )  =/= 
pi ) )
2723, 26mpbid 210 . . . . . . . . 9  |-  ( x  e.  D  ->  (
Im `  ( log `  x ) )  =/= 
pi )
2827necomd 2714 . . . . . . . 8  |-  ( x  e.  D  ->  pi  =/=  ( Im `  ( log `  x ) ) )
29 pire 22723 . . . . . . . . . 10  |-  pi  e.  RR
3029a1i 11 . . . . . . . . 9  |-  ( x  e.  D  ->  pi  e.  RR )
3121simprd 463 . . . . . . . . 9  |-  ( x  e.  D  ->  (
Im `  ( log `  x ) )  <_  pi )
3220, 30, 31leltned 9739 . . . . . . . 8  |-  ( x  e.  D  ->  (
( Im `  ( log `  x ) )  <  pi  <->  pi  =/=  ( Im `  ( log `  x ) ) ) )
3328, 32mpbird 232 . . . . . . 7  |-  ( x  e.  D  ->  (
Im `  ( log `  x ) )  < 
pi )
3429renegcli 9885 . . . . . . . . 9  |-  -u pi  e.  RR
3534rexri 9649 . . . . . . . 8  |-  -u pi  e.  RR*
3629rexri 9649 . . . . . . . 8  |-  pi  e.  RR*
37 elioo2 11579 . . . . . . . 8  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR* )  ->  ( ( Im `  ( log `  x ) )  e.  ( -u pi (,) pi )  <->  ( (
Im `  ( log `  x ) )  e.  RR  /\  -u pi  <  ( Im `  ( log `  x ) )  /\  ( Im `  ( log `  x ) )  <  pi ) ) )
3835, 36, 37mp2an 672 . . . . . . 7  |-  ( ( Im `  ( log `  x ) )  e.  ( -u pi (,) pi )  <->  ( ( Im
`  ( log `  x
) )  e.  RR  /\  -u pi  <  ( Im
`  ( log `  x
) )  /\  (
Im `  ( log `  x ) )  < 
pi ) )
3920, 22, 33, 38syl3anbrc 1181 . . . . . 6  |-  ( x  e.  D  ->  (
Im `  ( log `  x ) )  e.  ( -u pi (,) pi ) )
40 imf 12925 . . . . . . 7  |-  Im : CC
--> RR
41 ffn 5721 . . . . . . 7  |-  ( Im : CC --> RR  ->  Im  Fn  CC )
42 elpreima 5992 . . . . . . 7  |-  ( Im  Fn  CC  ->  (
( log `  x
)  e.  ( `' Im " ( -u pi (,) pi ) )  <-> 
( ( log `  x
)  e.  CC  /\  ( Im `  ( log `  x ) )  e.  ( -u pi (,) pi ) ) ) )
4340, 41, 42mp2b 10 . . . . . 6  |-  ( ( log `  x )  e.  ( `' Im " ( -u pi (,) pi ) )  <->  ( ( log `  x )  e.  CC  /\  ( Im
`  ( log `  x
) )  e.  (
-u pi (,) pi ) ) )
4419, 39, 43sylanbrc 664 . . . . 5  |-  ( x  e.  D  ->  ( log `  x )  e.  ( `' Im "
( -u pi (,) pi ) ) )
4515, 44mprgbir 2807 . . . 4  |-  ( log " D )  C_  ( `' Im " ( -u pi (,) pi ) )
46 elpreima 5992 . . . . . . 7  |-  ( Im  Fn  CC  ->  (
x  e.  ( `' Im " ( -u pi (,) pi ) )  <-> 
( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) ) ) )
4740, 41, 46mp2b 10 . . . . . 6  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  <->  ( x  e.  CC  /\  ( Im
`  x )  e.  ( -u pi (,) pi ) ) )
48 simpl 457 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  ( Im `  x )  e.  ( -u pi (,) pi ) )  ->  x  e.  CC )
49 eliooord 11593 . . . . . . . . . . 11  |-  ( ( Im `  x )  e.  ( -u pi (,) pi )  ->  ( -u pi  <  ( Im
`  x )  /\  ( Im `  x )  <  pi ) )
5049adantl 466 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  ( Im `  x )  e.  ( -u pi (,) pi ) )  -> 
( -u pi  <  (
Im `  x )  /\  ( Im `  x
)  <  pi )
)
5150simpld 459 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  ( Im `  x )  e.  ( -u pi (,) pi ) )  ->  -u pi  <  ( Im
`  x ) )
5250simprd 463 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  ( Im `  x )  e.  ( -u pi (,) pi ) )  -> 
( Im `  x
)  <  pi )
53 imcl 12923 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
Im `  x )  e.  RR )
5453adantr 465 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  ( Im `  x )  e.  ( -u pi (,) pi ) )  -> 
( Im `  x
)  e.  RR )
55 ltle 9676 . . . . . . . . . . 11  |-  ( ( ( Im `  x
)  e.  RR  /\  pi  e.  RR )  -> 
( ( Im `  x )  <  pi  ->  ( Im `  x
)  <_  pi )
)
5654, 29, 55sylancl 662 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  ( Im `  x )  e.  ( -u pi (,) pi ) )  -> 
( ( Im `  x )  <  pi  ->  ( Im `  x
)  <_  pi )
)
5752, 56mpd 15 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  ( Im `  x )  e.  ( -u pi (,) pi ) )  -> 
( Im `  x
)  <_  pi )
58 ellogrn 22819 . . . . . . . . 9  |-  ( x  e.  ran  log  <->  ( x  e.  CC  /\  -u pi  <  ( Im `  x
)  /\  ( Im `  x )  <_  pi ) )
5948, 51, 57, 58syl3anbrc 1181 . . . . . . . 8  |-  ( ( x  e.  CC  /\  ( Im `  x )  e.  ( -u pi (,) pi ) )  ->  x  e.  ran  log )
60 logef 22838 . . . . . . . 8  |-  ( x  e.  ran  log  ->  ( log `  ( exp `  x ) )  =  x )
6159, 60syl 16 . . . . . . 7  |-  ( ( x  e.  CC  /\  ( Im `  x )  e.  ( -u pi (,) pi ) )  -> 
( log `  ( exp `  x ) )  =  x )
62 efcl 13696 . . . . . . . . . 10  |-  ( x  e.  CC  ->  ( exp `  x )  e.  CC )
6362adantr 465 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  ( Im `  x )  e.  ( -u pi (,) pi ) )  -> 
( exp `  x
)  e.  CC )
6454adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( Im `  x )  e.  RR )
6564recnd 9625 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( Im `  x )  e.  CC )
66 picn 22724 . . . . . . . . . . . . . 14  |-  pi  e.  CC
6766a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  pi  e.  CC )
68 pipos 22725 . . . . . . . . . . . . . . 15  |-  0  <  pi
6929, 68gt0ne0ii 10095 . . . . . . . . . . . . . 14  |-  pi  =/=  0
7069a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  pi  =/=  0
)
7152adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( Im `  x )  <  pi )
7266mulid1i 9601 . . . . . . . . . . . . . . . . . 18  |-  ( pi  x.  1 )  =  pi
7371, 72syl6breqr 4477 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( Im `  x )  <  (
pi  x.  1 ) )
74 1re 9598 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR
7574a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  1  e.  RR )
7629a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  pi  e.  RR )
7768a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  0  <  pi )
78 ltdivmul 10423 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( Im `  x
)  e.  RR  /\  1  e.  RR  /\  (
pi  e.  RR  /\  0  <  pi ) )  ->  ( ( ( Im `  x )  /  pi )  <  1  <->  ( Im `  x )  <  (
pi  x.  1 ) ) )
7964, 75, 76, 77, 78syl112anc 1233 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( ( ( Im `  x )  /  pi )  <  1  <->  ( Im `  x )  <  (
pi  x.  1 ) ) )
8073, 79mpbird 232 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( ( Im
`  x )  /  pi )  <  1
)
81 1e0p1 11012 . . . . . . . . . . . . . . . 16  |-  1  =  ( 0  +  1 )
8280, 81syl6breq 4476 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( ( Im
`  x )  /  pi )  <  ( 0  +  1 ) )
8364recoscld 13756 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( cos `  (
Im `  x )
)  e.  RR )
8464resincld 13755 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( sin `  (
Im `  x )
)  e.  RR )
8583, 84crimd 13044 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( Im `  ( ( cos `  (
Im `  x )
)  +  ( _i  x.  ( sin `  (
Im `  x )
) ) ) )  =  ( sin `  (
Im `  x )
) )
86 efeul 13774 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  CC  ->  ( exp `  x )  =  ( ( exp `  (
Re `  x )
)  x.  ( ( cos `  ( Im
`  x ) )  +  ( _i  x.  ( sin `  ( Im
`  x ) ) ) ) ) )
8786ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( exp `  x
)  =  ( ( exp `  ( Re
`  x ) )  x.  ( ( cos `  ( Im `  x
) )  +  ( _i  x.  ( sin `  ( Im `  x
) ) ) ) ) )
8887oveq1d 6296 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( ( exp `  x )  /  ( exp `  ( Re `  x ) ) )  =  ( ( ( exp `  ( Re
`  x ) )  x.  ( ( cos `  ( Im `  x
) )  +  ( _i  x.  ( sin `  ( Im `  x
) ) ) ) )  /  ( exp `  ( Re `  x
) ) ) )
8983recnd 9625 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( cos `  (
Im `  x )
)  e.  CC )
90 ax-icn 9554 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  _i  e.  CC
9184recnd 9625 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( sin `  (
Im `  x )
)  e.  CC )
92 mulcl 9579 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( _i  e.  CC  /\  ( sin `  ( Im
`  x ) )  e.  CC )  -> 
( _i  x.  ( sin `  ( Im `  x ) ) )  e.  CC )
9390, 91, 92sylancr 663 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( _i  x.  ( sin `  ( Im
`  x ) ) )  e.  CC )
9489, 93addcld 9618 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( ( cos `  ( Im `  x
) )  +  ( _i  x.  ( sin `  ( Im `  x
) ) ) )  e.  CC )
95 recl 12922 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  e.  CC  ->  (
Re `  x )  e.  RR )
9695ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( Re `  x )  e.  RR )
9796recnd 9625 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( Re `  x )  e.  CC )
98 efcl 13696 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( Re `  x )  e.  CC  ->  ( exp `  ( Re `  x ) )  e.  CC )
9997, 98syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( exp `  (
Re `  x )
)  e.  CC )
100 efne0 13709 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( Re `  x )  e.  CC  ->  ( exp `  ( Re `  x ) )  =/=  0 )
10197, 100syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( exp `  (
Re `  x )
)  =/=  0 )
10294, 99, 101divcan3d 10331 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( ( ( exp `  ( Re
`  x ) )  x.  ( ( cos `  ( Im `  x
) )  +  ( _i  x.  ( sin `  ( Im `  x
) ) ) ) )  /  ( exp `  ( Re `  x
) ) )  =  ( ( cos `  (
Im `  x )
)  +  ( _i  x.  ( sin `  (
Im `  x )
) ) ) )
10388, 102eqtrd 2484 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( ( exp `  x )  /  ( exp `  ( Re `  x ) ) )  =  ( ( cos `  ( Im `  x
) )  +  ( _i  x.  ( sin `  ( Im `  x
) ) ) ) )
104 simpr 461 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( exp `  x
)  e.  RR )
10596reefcld 13701 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( exp `  (
Re `  x )
)  e.  RR )
106104, 105, 101redivcld 10378 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( ( exp `  x )  /  ( exp `  ( Re `  x ) ) )  e.  RR )
107103, 106eqeltrrd 2532 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( ( cos `  ( Im `  x
) )  +  ( _i  x.  ( sin `  ( Im `  x
) ) ) )  e.  RR )
108107reim0d 13037 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( Im `  ( ( cos `  (
Im `  x )
)  +  ( _i  x.  ( sin `  (
Im `  x )
) ) ) )  =  0 )
10985, 108eqtr3d 2486 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( sin `  (
Im `  x )
)  =  0 )
110 sineq0 22786 . . . . . . . . . . . . . . . . . 18  |-  ( ( Im `  x )  e.  CC  ->  (
( sin `  (
Im `  x )
)  =  0  <->  (
( Im `  x
)  /  pi )  e.  ZZ ) )
11165, 110syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( ( sin `  ( Im `  x
) )  =  0  <-> 
( ( Im `  x )  /  pi )  e.  ZZ )
)
112109, 111mpbid 210 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( ( Im
`  x )  /  pi )  e.  ZZ )
113 0z 10881 . . . . . . . . . . . . . . . 16  |-  0  e.  ZZ
114 zleltp1 10920 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( Im `  x )  /  pi )  e.  ZZ  /\  0  e.  ZZ )  ->  (
( ( Im `  x )  /  pi )  <_  0  <->  ( (
Im `  x )  /  pi )  <  (
0  +  1 ) ) )
115112, 113, 114sylancl 662 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( ( ( Im `  x )  /  pi )  <_ 
0  <->  ( ( Im
`  x )  /  pi )  <  ( 0  +  1 ) ) )
11682, 115mpbird 232 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( ( Im
`  x )  /  pi )  <_  0 )
117 df-neg 9813 . . . . . . . . . . . . . . . 16  |-  -u 1  =  ( 0  -  1 )
11866mulm1i 10007 . . . . . . . . . . . . . . . . . 18  |-  ( -u
1  x.  pi )  =  -u pi
11951adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  -u pi  <  (
Im `  x )
)
120118, 119syl5eqbr 4470 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( -u 1  x.  pi )  <  (
Im `  x )
)
12174renegcli 9885 . . . . . . . . . . . . . . . . . . 19  |-  -u 1  e.  RR
122121a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  -u 1  e.  RR )
123 ltmuldiv 10421 . . . . . . . . . . . . . . . . . 18  |-  ( (
-u 1  e.  RR  /\  ( Im `  x
)  e.  RR  /\  ( pi  e.  RR  /\  0  <  pi ) )  ->  ( ( -u 1  x.  pi )  <  ( Im `  x )  <->  -u 1  < 
( ( Im `  x )  /  pi ) ) )
124122, 64, 76, 77, 123syl112anc 1233 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( ( -u
1  x.  pi )  <  ( Im `  x )  <->  -u 1  < 
( ( Im `  x )  /  pi ) ) )
125120, 124mpbid 210 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  -u 1  <  (
( Im `  x
)  /  pi ) )
126117, 125syl5eqbrr 4471 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( 0  -  1 )  <  (
( Im `  x
)  /  pi ) )
127 zlem1lt 10921 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  ZZ  /\  ( ( Im `  x )  /  pi )  e.  ZZ )  ->  ( 0  <_  (
( Im `  x
)  /  pi )  <-> 
( 0  -  1 )  <  ( ( Im `  x )  /  pi ) ) )
128113, 112, 127sylancr 663 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( 0  <_ 
( ( Im `  x )  /  pi ) 
<->  ( 0  -  1 )  <  ( ( Im `  x )  /  pi ) ) )
129126, 128mpbird 232 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  0  <_  (
( Im `  x
)  /  pi ) )
13064, 76, 70redivcld 10378 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( ( Im
`  x )  /  pi )  e.  RR )
131 0re 9599 . . . . . . . . . . . . . . 15  |-  0  e.  RR
132 letri3 9673 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Im `  x )  /  pi )  e.  RR  /\  0  e.  RR )  ->  (
( ( Im `  x )  /  pi )  =  0  <->  ( (
( Im `  x
)  /  pi )  <_  0  /\  0  <_  ( ( Im `  x )  /  pi ) ) ) )
133130, 131, 132sylancl 662 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( ( ( Im `  x )  /  pi )  =  0  <->  ( ( ( Im `  x )  /  pi )  <_ 
0  /\  0  <_  ( ( Im `  x
)  /  pi ) ) ) )
134116, 129, 133mpbir2and 922 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( ( Im
`  x )  /  pi )  =  0
)
13565, 67, 70, 134diveq0d 10333 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( Im `  x )  =  0 )
136 reim0b 12931 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  (
x  e.  RR  <->  ( Im `  x )  =  0 ) )
137136ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( x  e.  RR  <->  ( Im `  x )  =  0 ) )
138135, 137mpbird 232 . . . . . . . . . . 11  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  x  e.  RR )
139138rpefcld 13717 . . . . . . . . . 10  |-  ( ( ( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  RR )  ->  ( exp `  x
)  e.  RR+ )
140139ex 434 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  ( Im `  x )  e.  ( -u pi (,) pi ) )  -> 
( ( exp `  x
)  e.  RR  ->  ( exp `  x )  e.  RR+ ) )
1414ellogdm 22892 . . . . . . . . 9  |-  ( ( exp `  x )  e.  D  <->  ( ( exp `  x )  e.  CC  /\  ( ( exp `  x )  e.  RR  ->  ( exp `  x )  e.  RR+ ) ) )
14263, 140, 141sylanbrc 664 . . . . . . . 8  |-  ( ( x  e.  CC  /\  ( Im `  x )  e.  ( -u pi (,) pi ) )  -> 
( exp `  x
)  e.  D )
143 funfvima2 6133 . . . . . . . . 9  |-  ( ( Fun  log  /\  D  C_  dom  log )  ->  (
( exp `  x
)  e.  D  -> 
( log `  ( exp `  x ) )  e.  ( log " D
) ) )
1449, 13, 143mp2an 672 . . . . . . . 8  |-  ( ( exp `  x )  e.  D  ->  ( log `  ( exp `  x
) )  e.  ( log " D ) )
145142, 144syl 16 . . . . . . 7  |-  ( ( x  e.  CC  /\  ( Im `  x )  e.  ( -u pi (,) pi ) )  -> 
( log `  ( exp `  x ) )  e.  ( log " D
) )
14661, 145eqeltrrd 2532 . . . . . 6  |-  ( ( x  e.  CC  /\  ( Im `  x )  e.  ( -u pi (,) pi ) )  ->  x  e.  ( log " D ) )
14747, 146sylbi 195 . . . . 5  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  x  e.  ( log " D
) )
148147ssriv 3493 . . . 4  |-  ( `' Im " ( -u pi (,) pi ) ) 
C_  ( log " D
)
14945, 148eqssi 3505 . . 3  |-  ( log " D )  =  ( `' Im " ( -u pi (,) pi ) )
150 f1oeq3 5799 . . 3  |-  ( ( log " D )  =  ( `' Im " ( -u pi (,) pi ) )  ->  (
( log  |`  D ) : D -1-1-onto-> ( log " D
)  <->  ( log  |`  D ) : D -1-1-onto-> ( `' Im "
( -u pi (,) pi ) ) ) )
151149, 150ax-mp 5 . 2  |-  ( ( log  |`  D ) : D -1-1-onto-> ( log " D
)  <->  ( log  |`  D ) : D -1-1-onto-> ( `' Im "
( -u pi (,) pi ) ) )
1527, 151mpbi 208 1  |-  ( log  |`  D ) : D -1-1-onto-> ( `' Im " ( -u pi (,) pi ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804    =/= wne 2638   A.wral 2793    \ cdif 3458    C_ wss 3461   {csn 4014   class class class wbr 4437   `'ccnv 4988   dom cdm 4989   ran crn 4990    |` cres 4991   "cima 4992   Fun wfun 5572    Fn wfn 5573   -->wf 5574   -1-1->wf1 5575   -1-1-onto->wf1o 5577   ` cfv 5578  (class class class)co 6281   CCcc 9493   RRcr 9494   0cc0 9495   1c1 9496   _ici 9497    + caddc 9498    x. cmul 9500   -oocmnf 9629   RR*cxr 9630    < clt 9631    <_ cle 9632    - cmin 9810   -ucneg 9811    / cdiv 10212   ZZcz 10870   RR+crp 11229   (,)cioo 11538   (,]cioc 11539   Recre 12909   Imcim 12910   expce 13675   sincsin 13677   cosccos 13678   picpi 13680   logclog 22814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573  ax-addf 9574  ax-mulf 9575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-om 6686  df-1st 6785  df-2nd 6786  df-supp 6904  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-ixp 7472  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fsupp 7832  df-fi 7873  df-sup 7903  df-oi 7938  df-card 8323  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10213  df-nn 10543  df-2 10600  df-3 10601  df-4 10602  df-5 10603  df-6 10604  df-7 10605  df-8 10606  df-9 10607  df-10 10608  df-n0 10802  df-z 10871  df-dec 10985  df-uz 11091  df-q 11192  df-rp 11230  df-xneg 11327  df-xadd 11328  df-xmul 11329  df-ioo 11542  df-ioc 11543  df-ico 11544  df-icc 11545  df-fz 11682  df-fzo 11804  df-fl 11908  df-mod 11976  df-seq 12087  df-exp 12146  df-fac 12333  df-bc 12360  df-hash 12385  df-shft 12879  df-cj 12911  df-re 12912  df-im 12913  df-sqrt 13047  df-abs 13048  df-limsup 13273  df-clim 13290  df-rlim 13291  df-sum 13488  df-ef 13681  df-sin 13683  df-cos 13684  df-pi 13686  df-struct 14511  df-ndx 14512  df-slot 14513  df-base 14514  df-sets 14515  df-ress 14516  df-plusg 14587  df-mulr 14588  df-starv 14589  df-sca 14590  df-vsca 14591  df-ip 14592  df-tset 14593  df-ple 14594  df-ds 14596  df-unif 14597  df-hom 14598  df-cco 14599  df-rest 14697  df-topn 14698  df-0g 14716  df-gsum 14717  df-topgen 14718  df-pt 14719  df-prds 14722  df-xrs 14776  df-qtop 14781  df-imas 14782  df-xps 14784  df-mre 14860  df-mrc 14861  df-acs 14863  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-submnd 15841  df-mulg 15934  df-cntz 16229  df-cmn 16674  df-psmet 18285  df-xmet 18286  df-met 18287  df-bl 18288  df-mopn 18289  df-fbas 18290  df-fg 18291  df-cnfld 18295  df-top 19272  df-bases 19274  df-topon 19275  df-topsp 19276  df-cld 19393  df-ntr 19394  df-cls 19395  df-nei 19472  df-lp 19510  df-perf 19511  df-cn 19601  df-cnp 19602  df-haus 19689  df-tx 19936  df-hmeo 20129  df-fil 20220  df-fm 20312  df-flim 20313  df-flf 20314  df-xms 20696  df-ms 20697  df-tms 20698  df-cncf 21255  df-limc 22143  df-dv 22144  df-log 22816
This theorem is referenced by:  efopnlem2  22910
  Copyright terms: Public domain W3C validator