MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdmss Structured version   Unicode version

Theorem logdmss 23452
Description: The continuity domain of  log is a subset of the regular domain of  log. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypothesis
Ref Expression
logcn.d  |-  D  =  ( CC  \  ( -oo (,] 0 ) )
Assertion
Ref Expression
logdmss  |-  D  C_  ( CC  \  { 0 } )

Proof of Theorem logdmss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 logcn.d . . . . 5  |-  D  =  ( CC  \  ( -oo (,] 0 ) )
21ellogdm 23449 . . . 4  |-  ( x  e.  D  <->  ( x  e.  CC  /\  ( x  e.  RR  ->  x  e.  RR+ ) ) )
32simplbi 461 . . 3  |-  ( x  e.  D  ->  x  e.  CC )
41logdmn0 23450 . . 3  |-  ( x  e.  D  ->  x  =/=  0 )
5 eldifsn 4128 . . 3  |-  ( x  e.  ( CC  \  { 0 } )  <-> 
( x  e.  CC  /\  x  =/=  0 ) )
63, 4, 5sylanbrc 668 . 2  |-  ( x  e.  D  ->  x  e.  ( CC  \  {
0 } ) )
76ssriv 3474 1  |-  D  C_  ( CC  \  { 0 } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1437    e. wcel 1870    =/= wne 2625    \ cdif 3439    C_ wss 3442   {csn 4002  (class class class)co 6305   CCcc 9536   RRcr 9537   0cc0 9538   -oocmnf 9672   RR+crp 11302   (,]cioc 11636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-i2m1 9606  ax-1ne0 9607  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-po 4775  df-so 4776  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-rp 11303  df-ioc 11640
This theorem is referenced by:  logcn  23457  dvloglem  23458  logf1o2  23460  dvlog  23461  dvlog2  23463  logtayl  23470  dvatan  23726  efrlim  23760  lgamcvg2  23845
  Copyright terms: Public domain W3C validator