MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdmn0 Structured version   Unicode version

Theorem logdmn0 22744
Description: A number in the continuous domain of  log is nonzero. (Contributed by Mario Carneiro, 18-Feb-2015.)
Hypothesis
Ref Expression
logcn.d  |-  D  =  ( CC  \  ( -oo (,] 0 ) )
Assertion
Ref Expression
logdmn0  |-  ( A  e.  D  ->  A  =/=  0 )

Proof of Theorem logdmn0
StepHypRef Expression
1 0nrp 11241 . . . 4  |-  -.  0  e.  RR+
2 0re 9587 . . . . 5  |-  0  e.  RR
3 logcn.d . . . . . . 7  |-  D  =  ( CC  \  ( -oo (,] 0 ) )
43ellogdm 22743 . . . . . 6  |-  ( 0  e.  D  <->  ( 0  e.  CC  /\  (
0  e.  RR  ->  0  e.  RR+ ) ) )
54simprbi 464 . . . . 5  |-  ( 0  e.  D  ->  (
0  e.  RR  ->  0  e.  RR+ ) )
62, 5mpi 17 . . . 4  |-  ( 0  e.  D  ->  0  e.  RR+ )
71, 6mto 176 . . 3  |-  -.  0  e.  D
8 eleq1 2534 . . 3  |-  ( A  =  0  ->  ( A  e.  D  <->  0  e.  D ) )
97, 8mtbiri 303 . 2  |-  ( A  =  0  ->  -.  A  e.  D )
109necon2ai 2697 1  |-  ( A  e.  D  ->  A  =/=  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1374    e. wcel 1762    =/= wne 2657    \ cdif 3468  (class class class)co 6277   CCcc 9481   RRcr 9482   0cc0 9483   -oocmnf 9617   RR+crp 11211   (,]cioc 11521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-i2m1 9551  ax-1ne0 9552  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-po 4795  df-so 4796  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-rp 11212  df-ioc 11525
This theorem is referenced by:  logdmss  22746  logcnlem2  22747  logcnlem3  22748  logcnlem4  22749  logcnlem5  22750  logcn  22751  dvloglem  22752  logf1o2  22754  logtayl  22764  logtayl2  22766  cxpcn  22842  atansssdm  22987  lgamgulmlem2  28200  dvcncxp1  29666  dvcnsqr  29667
  Copyright terms: Public domain W3C validator