MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdivlt Structured version   Unicode version

Theorem logdivlt 22068
Description: The  log x  /  x function is strictly decreasing on the reals greater than  _e. (Contributed by Mario Carneiro, 14-Mar-2014.)
Assertion
Ref Expression
logdivlt  |-  ( ( ( A  e.  RR  /\  _e  <_  A )  /\  ( B  e.  RR  /\  _e  <_  B )
)  ->  ( A  <  B  <->  ( ( log `  B )  /  B
)  <  ( ( log `  A )  /  A ) ) )

Proof of Theorem logdivlt
StepHypRef Expression
1 logdivlti 22067 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( log `  B
)  /  B )  <  ( ( log `  A )  /  A
) )
21ex 434 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  ->  ( A  <  B  ->  (
( log `  B
)  /  B )  <  ( ( log `  A )  /  A
) ) )
323expa 1187 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  _e  <_  A
)  ->  ( A  <  B  ->  ( ( log `  B )  /  B )  <  (
( log `  A
)  /  A ) ) )
43an32s 802 . . 3  |-  ( ( ( A  e.  RR  /\  _e  <_  A )  /\  B  e.  RR )  ->  ( A  < 
B  ->  ( ( log `  B )  /  B )  <  (
( log `  A
)  /  A ) ) )
54adantrr 716 . 2  |-  ( ( ( A  e.  RR  /\  _e  <_  A )  /\  ( B  e.  RR  /\  _e  <_  B )
)  ->  ( A  <  B  ->  ( ( log `  B )  /  B )  <  (
( log `  A
)  /  A ) ) )
6 fveq2 5689 . . . . . . . 8  |-  ( A  =  B  ->  ( log `  A )  =  ( log `  B
) )
7 id 22 . . . . . . . 8  |-  ( A  =  B  ->  A  =  B )
86, 7oveq12d 6107 . . . . . . 7  |-  ( A  =  B  ->  (
( log `  A
)  /  A )  =  ( ( log `  B )  /  B
) )
98eqcomd 2446 . . . . . 6  |-  ( A  =  B  ->  (
( log `  B
)  /  B )  =  ( ( log `  A )  /  A
) )
109a1i 11 . . . . 5  |-  ( ( ( A  e.  RR  /\  _e  <_  A )  /\  ( B  e.  RR  /\  _e  <_  B )
)  ->  ( A  =  B  ->  ( ( log `  B )  /  B )  =  ( ( log `  A
)  /  A ) ) )
11 logdivlti 22067 . . . . . . . . . 10  |-  ( ( ( B  e.  RR  /\  A  e.  RR  /\  _e  <_  B )  /\  B  <  A )  -> 
( ( log `  A
)  /  A )  <  ( ( log `  B )  /  B
) )
1211ex 434 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  A  e.  RR  /\  _e  <_  B )  ->  ( B  <  A  ->  (
( log `  A
)  /  A )  <  ( ( log `  B )  /  B
) ) )
13123expa 1187 . . . . . . . 8  |-  ( ( ( B  e.  RR  /\  A  e.  RR )  /\  _e  <_  B
)  ->  ( B  <  A  ->  ( ( log `  A )  /  A )  <  (
( log `  B
)  /  B ) ) )
1413an32s 802 . . . . . . 7  |-  ( ( ( B  e.  RR  /\  _e  <_  B )  /\  A  e.  RR )  ->  ( B  < 
A  ->  ( ( log `  A )  /  A )  <  (
( log `  B
)  /  B ) ) )
1514adantrr 716 . . . . . 6  |-  ( ( ( B  e.  RR  /\  _e  <_  B )  /\  ( A  e.  RR  /\  _e  <_  A )
)  ->  ( B  <  A  ->  ( ( log `  A )  /  A )  <  (
( log `  B
)  /  B ) ) )
1615ancoms 453 . . . . 5  |-  ( ( ( A  e.  RR  /\  _e  <_  A )  /\  ( B  e.  RR  /\  _e  <_  B )
)  ->  ( B  <  A  ->  ( ( log `  A )  /  A )  <  (
( log `  B
)  /  B ) ) )
1710, 16orim12d 834 . . . 4  |-  ( ( ( A  e.  RR  /\  _e  <_  A )  /\  ( B  e.  RR  /\  _e  <_  B )
)  ->  ( ( A  =  B  \/  B  <  A )  -> 
( ( ( log `  B )  /  B
)  =  ( ( log `  A )  /  A )  \/  ( ( log `  A
)  /  A )  <  ( ( log `  B )  /  B
) ) ) )
1817con3d 133 . . 3  |-  ( ( ( A  e.  RR  /\  _e  <_  A )  /\  ( B  e.  RR  /\  _e  <_  B )
)  ->  ( -.  ( ( ( log `  B )  /  B
)  =  ( ( log `  A )  /  A )  \/  ( ( log `  A
)  /  A )  <  ( ( log `  B )  /  B
) )  ->  -.  ( A  =  B  \/  B  <  A ) ) )
19 simpl 457 . . . . . 6  |-  ( ( B  e.  RR  /\  _e  <_  B )  ->  B  e.  RR )
20 epos 13487 . . . . . . . 8  |-  0  <  _e
21 0re 9384 . . . . . . . . 9  |-  0  e.  RR
22 ere 13372 . . . . . . . . 9  |-  _e  e.  RR
23 ltletr 9464 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  _e  e.  RR  /\  B  e.  RR )  ->  (
( 0  <  _e  /\  _e  <_  B )  ->  0  <  B ) )
2421, 22, 23mp3an12 1304 . . . . . . . 8  |-  ( B  e.  RR  ->  (
( 0  <  _e  /\  _e  <_  B )  ->  0  <  B ) )
2520, 24mpani 676 . . . . . . 7  |-  ( B  e.  RR  ->  (
_e  <_  B  ->  0  <  B ) )
2625imp 429 . . . . . 6  |-  ( ( B  e.  RR  /\  _e  <_  B )  -> 
0  <  B )
2719, 26elrpd 11023 . . . . 5  |-  ( ( B  e.  RR  /\  _e  <_  B )  ->  B  e.  RR+ )
28 relogcl 22025 . . . . . 6  |-  ( B  e.  RR+  ->  ( log `  B )  e.  RR )
29 rerpdivcl 11016 . . . . . 6  |-  ( ( ( log `  B
)  e.  RR  /\  B  e.  RR+ )  -> 
( ( log `  B
)  /  B )  e.  RR )
3028, 29mpancom 669 . . . . 5  |-  ( B  e.  RR+  ->  ( ( log `  B )  /  B )  e.  RR )
3127, 30syl 16 . . . 4  |-  ( ( B  e.  RR  /\  _e  <_  B )  -> 
( ( log `  B
)  /  B )  e.  RR )
32 simpl 457 . . . . . 6  |-  ( ( A  e.  RR  /\  _e  <_  A )  ->  A  e.  RR )
33 ltletr 9464 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  _e  e.  RR  /\  A  e.  RR )  ->  (
( 0  <  _e  /\  _e  <_  A )  ->  0  <  A ) )
3421, 22, 33mp3an12 1304 . . . . . . . 8  |-  ( A  e.  RR  ->  (
( 0  <  _e  /\  _e  <_  A )  ->  0  <  A ) )
3520, 34mpani 676 . . . . . . 7  |-  ( A  e.  RR  ->  (
_e  <_  A  ->  0  <  A ) )
3635imp 429 . . . . . 6  |-  ( ( A  e.  RR  /\  _e  <_  A )  -> 
0  <  A )
3732, 36elrpd 11023 . . . . 5  |-  ( ( A  e.  RR  /\  _e  <_  A )  ->  A  e.  RR+ )
38 relogcl 22025 . . . . . 6  |-  ( A  e.  RR+  ->  ( log `  A )  e.  RR )
39 rerpdivcl 11016 . . . . . 6  |-  ( ( ( log `  A
)  e.  RR  /\  A  e.  RR+ )  -> 
( ( log `  A
)  /  A )  e.  RR )
4038, 39mpancom 669 . . . . 5  |-  ( A  e.  RR+  ->  ( ( log `  A )  /  A )  e.  RR )
4137, 40syl 16 . . . 4  |-  ( ( A  e.  RR  /\  _e  <_  A )  -> 
( ( log `  A
)  /  A )  e.  RR )
42 axlttri 9444 . . . 4  |-  ( ( ( ( log `  B
)  /  B )  e.  RR  /\  (
( log `  A
)  /  A )  e.  RR )  -> 
( ( ( log `  B )  /  B
)  <  ( ( log `  A )  /  A )  <->  -.  (
( ( log `  B
)  /  B )  =  ( ( log `  A )  /  A
)  \/  ( ( log `  A )  /  A )  < 
( ( log `  B
)  /  B ) ) ) )
4331, 41, 42syl2anr 478 . . 3  |-  ( ( ( A  e.  RR  /\  _e  <_  A )  /\  ( B  e.  RR  /\  _e  <_  B )
)  ->  ( (
( log `  B
)  /  B )  <  ( ( log `  A )  /  A
)  <->  -.  ( (
( log `  B
)  /  B )  =  ( ( log `  A )  /  A
)  \/  ( ( log `  A )  /  A )  < 
( ( log `  B
)  /  B ) ) ) )
44 axlttri 9444 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  -.  ( A  =  B  \/  B  <  A
) ) )
4544ad2ant2r 746 . . 3  |-  ( ( ( A  e.  RR  /\  _e  <_  A )  /\  ( B  e.  RR  /\  _e  <_  B )
)  ->  ( A  <  B  <->  -.  ( A  =  B  \/  B  <  A ) ) )
4618, 43, 453imtr4d 268 . 2  |-  ( ( ( A  e.  RR  /\  _e  <_  A )  /\  ( B  e.  RR  /\  _e  <_  B )
)  ->  ( (
( log `  B
)  /  B )  <  ( ( log `  A )  /  A
)  ->  A  <  B ) )
475, 46impbid 191 1  |-  ( ( ( A  e.  RR  /\  _e  <_  A )  /\  ( B  e.  RR  /\  _e  <_  B )
)  ->  ( A  <  B  <->  ( ( log `  B )  /  B
)  <  ( ( log `  A )  /  A ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   class class class wbr 4290   ` cfv 5416  (class class class)co 6089   RRcr 9279   0cc0 9280    < clt 9416    <_ cle 9417    / cdiv 9991   RR+crp 10989   _eceu 13346   logclog 22004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-inf2 7845  ax-cnex 9336  ax-resscn 9337  ax-1cn 9338  ax-icn 9339  ax-addcl 9340  ax-addrcl 9341  ax-mulcl 9342  ax-mulrcl 9343  ax-mulcom 9344  ax-addass 9345  ax-mulass 9346  ax-distr 9347  ax-i2m1 9348  ax-1ne0 9349  ax-1rid 9350  ax-rnegex 9351  ax-rrecex 9352  ax-cnre 9353  ax-pre-lttri 9354  ax-pre-lttrn 9355  ax-pre-ltadd 9356  ax-pre-mulgt0 9357  ax-pre-sup 9358  ax-addf 9359  ax-mulf 9360
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-int 4127  df-iun 4171  df-iin 4172  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-se 4678  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-isom 5425  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-of 6318  df-om 6475  df-1st 6575  df-2nd 6576  df-supp 6689  df-recs 6830  df-rdg 6864  df-1o 6918  df-2o 6919  df-oadd 6922  df-er 7099  df-map 7214  df-pm 7215  df-ixp 7262  df-en 7309  df-dom 7310  df-sdom 7311  df-fin 7312  df-fsupp 7619  df-fi 7659  df-sup 7689  df-oi 7722  df-card 8107  df-cda 8335  df-pnf 9418  df-mnf 9419  df-xr 9420  df-ltxr 9421  df-le 9422  df-sub 9595  df-neg 9596  df-div 9992  df-nn 10321  df-2 10378  df-3 10379  df-4 10380  df-5 10381  df-6 10382  df-7 10383  df-8 10384  df-9 10385  df-10 10386  df-n0 10578  df-z 10645  df-dec 10754  df-uz 10860  df-q 10952  df-rp 10990  df-xneg 11087  df-xadd 11088  df-xmul 11089  df-ioo 11302  df-ioc 11303  df-ico 11304  df-icc 11305  df-fz 11436  df-fzo 11547  df-fl 11640  df-mod 11707  df-seq 11805  df-exp 11864  df-fac 12050  df-bc 12077  df-hash 12102  df-shft 12554  df-cj 12586  df-re 12587  df-im 12588  df-sqr 12722  df-abs 12723  df-limsup 12947  df-clim 12964  df-rlim 12965  df-sum 13162  df-ef 13351  df-e 13352  df-sin 13353  df-cos 13354  df-pi 13356  df-struct 14174  df-ndx 14175  df-slot 14176  df-base 14177  df-sets 14178  df-ress 14179  df-plusg 14249  df-mulr 14250  df-starv 14251  df-sca 14252  df-vsca 14253  df-ip 14254  df-tset 14255  df-ple 14256  df-ds 14258  df-unif 14259  df-hom 14260  df-cco 14261  df-rest 14359  df-topn 14360  df-0g 14378  df-gsum 14379  df-topgen 14380  df-pt 14381  df-prds 14384  df-xrs 14438  df-qtop 14443  df-imas 14444  df-xps 14446  df-mre 14522  df-mrc 14523  df-acs 14525  df-mnd 15413  df-submnd 15463  df-mulg 15546  df-cntz 15833  df-cmn 16277  df-psmet 17807  df-xmet 17808  df-met 17809  df-bl 17810  df-mopn 17811  df-fbas 17812  df-fg 17813  df-cnfld 17817  df-top 18501  df-bases 18503  df-topon 18504  df-topsp 18505  df-cld 18621  df-ntr 18622  df-cls 18623  df-nei 18700  df-lp 18738  df-perf 18739  df-cn 18829  df-cnp 18830  df-haus 18917  df-tx 19133  df-hmeo 19326  df-fil 19417  df-fm 19509  df-flim 19510  df-flf 19511  df-xms 19893  df-ms 19894  df-tms 19895  df-cncf 20452  df-limc 21339  df-dv 21340  df-log 22006
This theorem is referenced by:  logdivle  22069  bposlem7  22627  chebbnd1lem2  22717  chebbnd1lem3  22718  pntpbnd1a  22832
  Copyright terms: Public domain W3C validator