MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdivbnd Structured version   Unicode version

Theorem logdivbnd 24257
Description: A bound on a sum of logs, used in pntlemk 24307. This is not as precise as logdivsum 24234 in its asymptotic behavior, but it is valid for all  N and does not require a limit value. (Contributed by Mario Carneiro, 13-Apr-2016.)
Assertion
Ref Expression
logdivbnd  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
)  <_  ( (
( ( log `  N
)  +  1 ) ^ 2 )  / 
2 ) )
Distinct variable group:    n, N

Proof of Theorem logdivbnd
Dummy variables  i  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 10679 . . . 4  |-  2  e.  RR
2 fzfid 12183 . . . . 5  |-  ( N  e.  NN  ->  (
1 ... N )  e. 
Fin )
3 elfzuz 11794 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... N )  ->  n  e.  ( ZZ>= `  1 )
)
43adantl 467 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  n  e.  (
ZZ>= `  1 ) )
5 nnuz 11194 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
64, 5syl6eleqr 2528 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  n  e.  NN )
76nnrpd 11339 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  n  e.  RR+ )
87relogcld 23437 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( log `  n
)  e.  RR )
98, 6nndivred 10658 . . . . 5  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( ( log `  n )  /  n
)  e.  RR )
102, 9fsumrecl 13778 . . . 4  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
)  e.  RR )
11 remulcl 9623 . . . 4  |-  ( ( 2  e.  RR  /\  sum_
n  e.  ( 1 ... N ) ( ( log `  n
)  /  n )  e.  RR )  -> 
( 2  x.  sum_ n  e.  ( 1 ... N ) ( ( log `  n )  /  n ) )  e.  RR )
121, 10, 11sylancr 667 . . 3  |-  ( N  e.  NN  ->  (
2  x.  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
) )  e.  RR )
13 elfznn 11826 . . . . . . 7  |-  ( i  e.  ( 1 ... N )  ->  i  e.  NN )
1413adantl 467 . . . . . 6  |-  ( ( N  e.  NN  /\  i  e.  ( 1 ... N ) )  ->  i  e.  NN )
1514nnrecred 10655 . . . . 5  |-  ( ( N  e.  NN  /\  i  e.  ( 1 ... N ) )  ->  ( 1  / 
i )  e.  RR )
162, 15fsumrecl 13778 . . . 4  |-  ( N  e.  NN  ->  sum_ i  e.  ( 1 ... N
) ( 1  / 
i )  e.  RR )
1716resqcld 12439 . . 3  |-  ( N  e.  NN  ->  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i ) ^ 2 )  e.  RR )
18 nnrp 11311 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  RR+ )
1918relogcld 23437 . . . . 5  |-  ( N  e.  NN  ->  ( log `  N )  e.  RR )
20 peano2re 9805 . . . . 5  |-  ( ( log `  N )  e.  RR  ->  (
( log `  N
)  +  1 )  e.  RR )
2119, 20syl 17 . . . 4  |-  ( N  e.  NN  ->  (
( log `  N
)  +  1 )  e.  RR )
2221resqcld 12439 . . 3  |-  ( N  e.  NN  ->  (
( ( log `  N
)  +  1 ) ^ 2 )  e.  RR )
2310recnd 9668 . . . . 5  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
)  e.  CC )
24232timesd 10855 . . . 4  |-  ( N  e.  NN  ->  (
2  x.  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
) )  =  (
sum_ n  e.  (
1 ... N ) ( ( log `  n
)  /  n )  +  sum_ n  e.  ( 1 ... N ) ( ( log `  n
)  /  n ) ) )
25 fzfid 12183 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( 1 ... n )  e.  Fin )
26 elfznn 11826 . . . . . . . . . . 11  |-  ( i  e.  ( 1 ... n )  ->  i  e.  NN )
2726adantl 467 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  /\  i  e.  ( 1 ... n ) )  ->  i  e.  NN )
2827nnrecred 10655 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  /\  i  e.  ( 1 ... n ) )  ->  ( 1  /  i )  e.  RR )
2925, 28fsumrecl 13778 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  sum_ i  e.  ( 1 ... n ) ( 1  /  i
)  e.  RR )
3029, 6nndivred 10658 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... n
) ( 1  / 
i )  /  n
)  e.  RR )
312, 30fsumrecl 13778 . . . . . 6  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( sum_ i  e.  ( 1 ... n
) ( 1  / 
i )  /  n
)  e.  RR )
32 fzfid 12183 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( 1 ... ( n  -  1 ) )  e.  Fin )
33 elfznn 11826 . . . . . . . . . . 11  |-  ( i  e.  ( 1 ... ( n  -  1 ) )  ->  i  e.  NN )
3433adantl 467 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  /\  i  e.  ( 1 ... ( n  -  1 ) ) )  ->  i  e.  NN )
3534nnrecred 10655 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  /\  i  e.  ( 1 ... ( n  -  1 ) ) )  ->  ( 1  /  i )  e.  RR )
3632, 35fsumrecl 13778 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  e.  RR )
3736, 6nndivred 10658 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  /  n
)  e.  RR )
382, 37fsumrecl 13778 . . . . . 6  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  /  n
)  e.  RR )
396nncnd 10625 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  n  e.  CC )
40 ax-1cn 9596 . . . . . . . . . . . . . . 15  |-  1  e.  CC
41 npcan 9883 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( ( n  - 
1 )  +  1 )  =  n )
4239, 40, 41sylancl 666 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( ( n  -  1 )  +  1 )  =  n )
4342fveq2d 5885 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( log `  (
( n  -  1 )  +  1 ) )  =  ( log `  n ) )
4443oveq2d 6321 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  -  ( log `  ( ( n  -  1 )  +  1 ) ) )  =  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  -  ( log `  n ) ) )
45 nnm1nn0 10911 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
n  -  1 )  e.  NN0 )
46 harmonicbnd3 23798 . . . . . . . . . . . . 13  |-  ( ( n  -  1 )  e.  NN0  ->  ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  -  ( log `  (
( n  -  1 )  +  1 ) ) )  e.  ( 0 [,] gamma )
)
476, 45, 463syl 18 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  -  ( log `  ( ( n  -  1 )  +  1 ) ) )  e.  ( 0 [,]
gamma ) )
4844, 47eqeltrrd 2518 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  -  ( log `  n ) )  e.  ( 0 [,]
gamma ) )
49 0re 9642 . . . . . . . . . . . . 13  |-  0  e.  RR
50 emre 23796 . . . . . . . . . . . . 13  |-  gamma  e.  RR
5149, 50elicc2i 11700 . . . . . . . . . . . 12  |-  ( (
sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  -  ( log `  n ) )  e.  ( 0 [,] gamma )  <-> 
( ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  -  ( log `  n ) )  e.  RR  /\  0  <_  ( sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  -  ( log `  n ) )  /\  ( sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  -  ( log `  n ) )  <_  gamma ) )
5251simp2bi 1021 . . . . . . . . . . 11  |-  ( (
sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  -  ( log `  n ) )  e.  ( 0 [,] gamma )  ->  0  <_  ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  -  ( log `  n
) ) )
5348, 52syl 17 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  0  <_  ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  -  ( log `  n
) ) )
5436, 8subge0d 10202 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( 0  <_ 
( sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  -  ( log `  n ) )  <->  ( log `  n )  <_  sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i ) ) )
5553, 54mpbid 213 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( log `  n
)  <_  sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i ) )
568, 36, 7, 55lediv1dd 11396 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( ( log `  n )  /  n
)  <_  ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  /  n ) )
5727nnrpd 11339 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  /\  i  e.  ( 1 ... n ) )  ->  i  e.  RR+ )
5857rpreccld 11351 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  /\  i  e.  ( 1 ... n ) )  ->  ( 1  /  i )  e.  RR+ )
5958rpge0d 11345 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  /\  i  e.  ( 1 ... n ) )  ->  0  <_  ( 1  /  i ) )
60 elfzelz 11798 . . . . . . . . . . . . . 14  |-  ( n  e.  ( 1 ... N )  ->  n  e.  ZZ )
6160adantl 467 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  n  e.  ZZ )
62 peano2zm 10980 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  (
n  -  1 )  e.  ZZ )
6361, 62syl 17 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( n  - 
1 )  e.  ZZ )
646nnred 10624 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  n  e.  RR )
6564lem1d 10540 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( n  - 
1 )  <_  n
)
66 eluz2 11165 . . . . . . . . . . . 12  |-  ( n  e.  ( ZZ>= `  (
n  -  1 ) )  <->  ( ( n  -  1 )  e.  ZZ  /\  n  e.  ZZ  /\  ( n  -  1 )  <_  n ) )
6763, 61, 65, 66syl3anbrc 1189 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  n  e.  (
ZZ>= `  ( n  - 
1 ) ) )
68 fzss2 11836 . . . . . . . . . . 11  |-  ( n  e.  ( ZZ>= `  (
n  -  1 ) )  ->  ( 1 ... ( n  - 
1 ) )  C_  ( 1 ... n
) )
6967, 68syl 17 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( 1 ... ( n  -  1 ) )  C_  (
1 ... n ) )
7025, 28, 59, 69fsumless 13834 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  <_  sum_ i  e.  ( 1 ... n
) ( 1  / 
i ) )
716nngt0d 10653 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  0  <  n
)
72 lediv1 10469 . . . . . . . . . 10  |-  ( (
sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  e.  RR  /\  sum_ i  e.  ( 1 ... n ) ( 1  /  i )  e.  RR  /\  (
n  e.  RR  /\  0  <  n ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  <_  sum_ i  e.  ( 1 ... n
) ( 1  / 
i )  <->  ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  /  n )  <_ 
( sum_ i  e.  ( 1 ... n ) ( 1  /  i
)  /  n ) ) )
7336, 29, 64, 71, 72syl112anc 1268 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  <_  sum_ i  e.  ( 1 ... n
) ( 1  / 
i )  <->  ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  /  n )  <_ 
( sum_ i  e.  ( 1 ... n ) ( 1  /  i
)  /  n ) ) )
7470, 73mpbid 213 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  /  n
)  <_  ( sum_ i  e.  ( 1 ... n ) ( 1  /  i )  /  n ) )
759, 37, 30, 56, 74letrd 9791 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( ( log `  n )  /  n
)  <_  ( sum_ i  e.  ( 1 ... n ) ( 1  /  i )  /  n ) )
762, 9, 30, 75fsumle 13837 . . . . . 6  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
)  <_  sum_ n  e.  ( 1 ... N
) ( sum_ i  e.  ( 1 ... n
) ( 1  / 
i )  /  n
) )
772, 9, 37, 56fsumle 13837 . . . . . 6  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
)  <_  sum_ n  e.  ( 1 ... N
) ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  /  n
) )
7810, 10, 31, 38, 76, 77le2addd 10231 . . . . 5  |-  ( N  e.  NN  ->  ( sum_ n  e.  ( 1 ... N ) ( ( log `  n
)  /  n )  +  sum_ n  e.  ( 1 ... N ) ( ( log `  n
)  /  n ) )  <_  ( sum_ n  e.  ( 1 ... N ) ( sum_ i  e.  ( 1 ... n ) ( 1  /  i )  /  n )  + 
sum_ n  e.  (
1 ... N ) (
sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  /  n ) ) )
79 oveq1 6312 . . . . . . . . . . 11  |-  ( m  =  n  ->  (
m  -  1 )  =  ( n  - 
1 ) )
8079oveq2d 6321 . . . . . . . . . 10  |-  ( m  =  n  ->  (
1 ... ( m  - 
1 ) )  =  ( 1 ... (
n  -  1 ) ) )
8180sumeq1d 13745 . . . . . . . . 9  |-  ( m  =  n  ->  sum_ i  e.  ( 1 ... (
m  -  1 ) ) ( 1  / 
i )  =  sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i ) )
8281, 81jca 534 . . . . . . . 8  |-  ( m  =  n  ->  ( sum_ i  e.  ( 1 ... ( m  - 
1 ) ) ( 1  /  i )  =  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  /\  sum_ i  e.  ( 1 ... (
m  -  1 ) ) ( 1  / 
i )  =  sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i ) ) )
83 oveq1 6312 . . . . . . . . . . 11  |-  ( m  =  ( n  + 
1 )  ->  (
m  -  1 )  =  ( ( n  +  1 )  - 
1 ) )
8483oveq2d 6321 . . . . . . . . . 10  |-  ( m  =  ( n  + 
1 )  ->  (
1 ... ( m  - 
1 ) )  =  ( 1 ... (
( n  +  1 )  -  1 ) ) )
8584sumeq1d 13745 . . . . . . . . 9  |-  ( m  =  ( n  + 
1 )  ->  sum_ i  e.  ( 1 ... (
m  -  1 ) ) ( 1  / 
i )  =  sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i ) )
8685, 85jca 534 . . . . . . . 8  |-  ( m  =  ( n  + 
1 )  ->  ( sum_ i  e.  ( 1 ... ( m  - 
1 ) ) ( 1  /  i )  =  sum_ i  e.  ( 1 ... ( ( n  +  1 )  -  1 ) ) ( 1  /  i
)  /\  sum_ i  e.  ( 1 ... (
m  -  1 ) ) ( 1  / 
i )  =  sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i ) ) )
87 oveq1 6312 . . . . . . . . . . . . . 14  |-  ( m  =  1  ->  (
m  -  1 )  =  ( 1  -  1 ) )
88 1m1e0 10678 . . . . . . . . . . . . . 14  |-  ( 1  -  1 )  =  0
8987, 88syl6eq 2486 . . . . . . . . . . . . 13  |-  ( m  =  1  ->  (
m  -  1 )  =  0 )
9089oveq2d 6321 . . . . . . . . . . . 12  |-  ( m  =  1  ->  (
1 ... ( m  - 
1 ) )  =  ( 1 ... 0
) )
91 fz10 11818 . . . . . . . . . . . 12  |-  ( 1 ... 0 )  =  (/)
9290, 91syl6eq 2486 . . . . . . . . . . 11  |-  ( m  =  1  ->  (
1 ... ( m  - 
1 ) )  =  (/) )
9392sumeq1d 13745 . . . . . . . . . 10  |-  ( m  =  1  ->  sum_ i  e.  ( 1 ... (
m  -  1 ) ) ( 1  / 
i )  =  sum_ i  e.  (/)  ( 1  /  i ) )
94 sum0 13765 . . . . . . . . . 10  |-  sum_ i  e.  (/)  ( 1  / 
i )  =  0
9593, 94syl6eq 2486 . . . . . . . . 9  |-  ( m  =  1  ->  sum_ i  e.  ( 1 ... (
m  -  1 ) ) ( 1  / 
i )  =  0 )
9695, 95jca 534 . . . . . . . 8  |-  ( m  =  1  ->  ( sum_ i  e.  ( 1 ... ( m  - 
1 ) ) ( 1  /  i )  =  0  /\  sum_ i  e.  ( 1 ... ( m  - 
1 ) ) ( 1  /  i )  =  0 ) )
97 oveq1 6312 . . . . . . . . . . 11  |-  ( m  =  ( N  + 
1 )  ->  (
m  -  1 )  =  ( ( N  +  1 )  - 
1 ) )
9897oveq2d 6321 . . . . . . . . . 10  |-  ( m  =  ( N  + 
1 )  ->  (
1 ... ( m  - 
1 ) )  =  ( 1 ... (
( N  +  1 )  -  1 ) ) )
9998sumeq1d 13745 . . . . . . . . 9  |-  ( m  =  ( N  + 
1 )  ->  sum_ i  e.  ( 1 ... (
m  -  1 ) ) ( 1  / 
i )  =  sum_ i  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) ) ( 1  /  i ) )
10099, 99jca 534 . . . . . . . 8  |-  ( m  =  ( N  + 
1 )  ->  ( sum_ i  e.  ( 1 ... ( m  - 
1 ) ) ( 1  /  i )  =  sum_ i  e.  ( 1 ... ( ( N  +  1 )  -  1 ) ) ( 1  /  i
)  /\  sum_ i  e.  ( 1 ... (
m  -  1 ) ) ( 1  / 
i )  =  sum_ i  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) ) ( 1  /  i ) ) )
101 peano2nn 10621 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
102101, 5syl6eleq 2527 . . . . . . . 8  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  ( ZZ>= `  1
) )
103 fzfid 12183 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  m  e.  ( 1 ... ( N  + 
1 ) ) )  ->  ( 1 ... ( m  -  1 ) )  e.  Fin )
104 elfznn 11826 . . . . . . . . . . . 12  |-  ( i  e.  ( 1 ... ( m  -  1 ) )  ->  i  e.  NN )
105104adantl 467 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  m  e.  ( 1 ... ( N  + 
1 ) ) )  /\  i  e.  ( 1 ... ( m  -  1 ) ) )  ->  i  e.  NN )
106105nnrecred 10655 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  m  e.  ( 1 ... ( N  + 
1 ) ) )  /\  i  e.  ( 1 ... ( m  -  1 ) ) )  ->  ( 1  /  i )  e.  RR )
107103, 106fsumrecl 13778 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  m  e.  ( 1 ... ( N  + 
1 ) ) )  ->  sum_ i  e.  ( 1 ... ( m  -  1 ) ) ( 1  /  i
)  e.  RR )
108107recnd 9668 . . . . . . . 8  |-  ( ( N  e.  NN  /\  m  e.  ( 1 ... ( N  + 
1 ) ) )  ->  sum_ i  e.  ( 1 ... ( m  -  1 ) ) ( 1  /  i
)  e.  CC )
10982, 86, 96, 100, 102, 108, 108fsumparts 13844 . . . . . . 7  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1..^ ( N  +  1 ) ) ( sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  x.  ( sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i )  -  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
) ) )  =  ( ( ( sum_ i  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) ) ( 1  /  i )  x.  sum_ i  e.  ( 1 ... ( ( N  +  1 )  -  1 ) ) ( 1  /  i
) )  -  (
0  x.  0 ) )  -  sum_ n  e.  ( 1..^ ( N  +  1 ) ) ( ( sum_ i  e.  ( 1 ... (
( n  +  1 )  -  1 ) ) ( 1  / 
i )  -  sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i ) )  x.  sum_ i  e.  ( 1 ... (
( n  +  1 )  -  1 ) ) ( 1  / 
i ) ) ) )
110 nnz 10959 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  ZZ )
111 fzval3 11980 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
1 ... N )  =  ( 1..^ ( N  +  1 ) ) )
112110, 111syl 17 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
1 ... N )  =  ( 1..^ ( N  +  1 ) ) )
113112eqcomd 2437 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1..^ ( N  + 
1 ) )  =  ( 1 ... N
) )
114 pncan 9880 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( ( n  + 
1 )  -  1 )  =  n )
11539, 40, 114sylancl 666 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( ( n  +  1 )  - 
1 )  =  n )
116115oveq2d 6321 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( 1 ... ( ( n  + 
1 )  -  1 ) )  =  ( 1 ... n ) )
117116sumeq1d 13745 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  sum_ i  e.  ( 1 ... ( ( n  +  1 )  -  1 ) ) ( 1  /  i
)  =  sum_ i  e.  ( 1 ... n
) ( 1  / 
i ) )
11828recnd 9668 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  /\  i  e.  ( 1 ... n ) )  ->  ( 1  /  i )  e.  CC )
119 oveq2 6313 . . . . . . . . . . . . . 14  |-  ( i  =  n  ->  (
1  /  i )  =  ( 1  /  n ) )
1204, 118, 119fsumm1 13790 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  sum_ i  e.  ( 1 ... n ) ( 1  /  i
)  =  ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  +  ( 1  /  n ) ) )
121117, 120eqtrd 2470 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  sum_ i  e.  ( 1 ... ( ( n  +  1 )  -  1 ) ) ( 1  /  i
)  =  ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  +  ( 1  /  n ) ) )
122121oveq1d 6320 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
( n  +  1 )  -  1 ) ) ( 1  / 
i )  -  sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i ) )  =  ( (
sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  +  ( 1  /  n ) )  -  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
) ) )
12336recnd 9668 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  e.  CC )
1246nnrecred 10655 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( 1  /  n )  e.  RR )
125124recnd 9668 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( 1  /  n )  e.  CC )
126123, 125pncan2d 9987 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  +  ( 1  /  n ) )  -  sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i ) )  =  ( 1  /  n ) )
127122, 126eqtrd 2470 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
( n  +  1 )  -  1 ) ) ( 1  / 
i )  -  sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i ) )  =  ( 1  /  n ) )
128127oveq2d 6321 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  x.  ( sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i )  -  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
) ) )  =  ( sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  x.  ( 1  /  n ) ) )
1296nnne0d 10654 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  n  =/=  0
)
130123, 39, 129divrecd 10385 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  /  n
)  =  ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  x.  ( 1  /  n ) ) )
131128, 130eqtr4d 2473 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  x.  ( sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i )  -  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
) ) )  =  ( sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  /  n ) )
132113, 131sumeq12rdv 13751 . . . . . . 7  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1..^ ( N  +  1 ) ) ( sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  x.  ( sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i )  -  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
) ) )  = 
sum_ n  e.  (
1 ... N ) (
sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  /  n ) )
133 nncn 10617 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  N  e.  CC )
134 pncan 9880 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
135133, 40, 134sylancl 666 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( N  +  1 )  -  1 )  =  N )
136135oveq2d 6321 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
1 ... ( ( N  +  1 )  - 
1 ) )  =  ( 1 ... N
) )
137136sumeq1d 13745 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  sum_ i  e.  ( 1 ... (
( N  +  1 )  -  1 ) ) ( 1  / 
i )  =  sum_ i  e.  ( 1 ... N ) ( 1  /  i ) )
138137, 137oveq12d 6323 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( sum_ i  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) ) ( 1  /  i )  x.  sum_ i  e.  ( 1 ... ( ( N  +  1 )  -  1 ) ) ( 1  /  i
) )  =  (
sum_ i  e.  ( 1 ... N ) ( 1  /  i
)  x.  sum_ i  e.  ( 1 ... N
) ( 1  / 
i ) ) )
13916recnd 9668 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  sum_ i  e.  ( 1 ... N
) ( 1  / 
i )  e.  CC )
140139sqvald 12410 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i ) ^ 2 )  =  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i
)  x.  sum_ i  e.  ( 1 ... N
) ( 1  / 
i ) ) )
141138, 140eqtr4d 2473 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( sum_ i  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) ) ( 1  /  i )  x.  sum_ i  e.  ( 1 ... ( ( N  +  1 )  -  1 ) ) ( 1  /  i
) )  =  (
sum_ i  e.  ( 1 ... N ) ( 1  /  i
) ^ 2 ) )
142 0cn 9634 . . . . . . . . . . . 12  |-  0  e.  CC
143142mul01i 9822 . . . . . . . . . . 11  |-  ( 0  x.  0 )  =  0
144143a1i 11 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
0  x.  0 )  =  0 )
145141, 144oveq12d 6323 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( sum_ i  e.  ( 1 ... ( ( N  +  1 )  -  1 ) ) ( 1  /  i
)  x.  sum_ i  e.  ( 1 ... (
( N  +  1 )  -  1 ) ) ( 1  / 
i ) )  -  ( 0  x.  0 ) )  =  ( ( sum_ i  e.  ( 1 ... N ) ( 1  /  i
) ^ 2 )  -  0 ) )
146139sqcld 12411 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i ) ^ 2 )  e.  CC )
147146subid1d 9974 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( sum_ i  e.  ( 1 ... N ) ( 1  /  i
) ^ 2 )  -  0 )  =  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i
) ^ 2 ) )
148145, 147eqtrd 2470 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( sum_ i  e.  ( 1 ... ( ( N  +  1 )  -  1 ) ) ( 1  /  i
)  x.  sum_ i  e.  ( 1 ... (
( N  +  1 )  -  1 ) ) ( 1  / 
i ) )  -  ( 0  x.  0 ) )  =  (
sum_ i  e.  ( 1 ... N ) ( 1  /  i
) ^ 2 ) )
149127, 117oveq12d 6323 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( ( sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i )  -  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
) )  x.  sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i ) )  =  ( ( 1  /  n )  x.  sum_ i  e.  ( 1 ... n ) ( 1  /  i
) ) )
15029recnd 9668 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  sum_ i  e.  ( 1 ... n ) ( 1  /  i
)  e.  CC )
151150, 39, 129divrec2d 10386 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... n
) ( 1  / 
i )  /  n
)  =  ( ( 1  /  n )  x.  sum_ i  e.  ( 1 ... n ) ( 1  /  i
) ) )
152149, 151eqtr4d 2473 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( ( sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i )  -  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
) )  x.  sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i ) )  =  ( sum_ i  e.  ( 1 ... n ) ( 1  /  i )  /  n ) )
153113, 152sumeq12rdv 13751 . . . . . . . 8  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1..^ ( N  +  1 ) ) ( ( sum_ i  e.  ( 1 ... (
( n  +  1 )  -  1 ) ) ( 1  / 
i )  -  sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i ) )  x.  sum_ i  e.  ( 1 ... (
( n  +  1 )  -  1 ) ) ( 1  / 
i ) )  = 
sum_ n  e.  (
1 ... N ) (
sum_ i  e.  ( 1 ... n ) ( 1  /  i
)  /  n ) )
154148, 153oveq12d 6323 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( sum_ i  e.  ( 1 ... (
( N  +  1 )  -  1 ) ) ( 1  / 
i )  x.  sum_ i  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) ) ( 1  /  i ) )  -  ( 0  x.  0 ) )  -  sum_ n  e.  ( 1..^ ( N  + 
1 ) ) ( ( sum_ i  e.  ( 1 ... ( ( n  +  1 )  -  1 ) ) ( 1  /  i
)  -  sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i ) )  x. 
sum_ i  e.  ( 1 ... ( ( n  +  1 )  -  1 ) ) ( 1  /  i
) ) )  =  ( ( sum_ i  e.  ( 1 ... N
) ( 1  / 
i ) ^ 2 )  -  sum_ n  e.  ( 1 ... N
) ( sum_ i  e.  ( 1 ... n
) ( 1  / 
i )  /  n
) ) )
155109, 132, 1543eqtr3rd 2479 . . . . . 6  |-  ( N  e.  NN  ->  (
( sum_ i  e.  ( 1 ... N ) ( 1  /  i
) ^ 2 )  -  sum_ n  e.  ( 1 ... N ) ( sum_ i  e.  ( 1 ... n ) ( 1  /  i
)  /  n ) )  =  sum_ n  e.  ( 1 ... N
) ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  /  n
) )
15631recnd 9668 . . . . . . 7  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( sum_ i  e.  ( 1 ... n
) ( 1  / 
i )  /  n
)  e.  CC )
15738recnd 9668 . . . . . . 7  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  /  n
)  e.  CC )
158146, 156, 157subaddd 10003 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( sum_ i  e.  ( 1 ... N
) ( 1  / 
i ) ^ 2 )  -  sum_ n  e.  ( 1 ... N
) ( sum_ i  e.  ( 1 ... n
) ( 1  / 
i )  /  n
) )  =  sum_ n  e.  ( 1 ... N ) ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  /  n )  <->  ( sum_ n  e.  ( 1 ... N ) ( sum_ i  e.  ( 1 ... n ) ( 1  /  i )  /  n )  + 
sum_ n  e.  (
1 ... N ) (
sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  /  n ) )  =  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i ) ^ 2 ) ) )
159155, 158mpbid 213 . . . . 5  |-  ( N  e.  NN  ->  ( sum_ n  e.  ( 1 ... N ) (
sum_ i  e.  ( 1 ... n ) ( 1  /  i
)  /  n )  +  sum_ n  e.  ( 1 ... N ) ( sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  /  n ) )  =  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i ) ^ 2 ) )
16078, 159breqtrd 4450 . . . 4  |-  ( N  e.  NN  ->  ( sum_ n  e.  ( 1 ... N ) ( ( log `  n
)  /  n )  +  sum_ n  e.  ( 1 ... N ) ( ( log `  n
)  /  n ) )  <_  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i ) ^ 2 ) )
16124, 160eqbrtrd 4446 . . 3  |-  ( N  e.  NN  ->  (
2  x.  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
) )  <_  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i ) ^ 2 ) )
162 flid 12041 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( |_ `  N )  =  N )
163110, 162syl 17 . . . . . . 7  |-  ( N  e.  NN  ->  ( |_ `  N )  =  N )
164163oveq2d 6321 . . . . . 6  |-  ( N  e.  NN  ->  (
1 ... ( |_ `  N ) )  =  ( 1 ... N
) )
165164sumeq1d 13745 . . . . 5  |-  ( N  e.  NN  ->  sum_ i  e.  ( 1 ... ( |_ `  N ) ) ( 1  /  i
)  =  sum_ i  e.  ( 1 ... N
) ( 1  / 
i ) )
166 nnre 10616 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  RR )
167 nnge1 10635 . . . . . 6  |-  ( N  e.  NN  ->  1  <_  N )
168 harmonicubnd 23800 . . . . . 6  |-  ( ( N  e.  RR  /\  1  <_  N )  ->  sum_ i  e.  ( 1 ... ( |_ `  N ) ) ( 1  /  i )  <_  ( ( log `  N )  +  1 ) )
169166, 167, 168syl2anc 665 . . . . 5  |-  ( N  e.  NN  ->  sum_ i  e.  ( 1 ... ( |_ `  N ) ) ( 1  /  i
)  <_  ( ( log `  N )  +  1 ) )
170165, 169eqbrtrrd 4448 . . . 4  |-  ( N  e.  NN  ->  sum_ i  e.  ( 1 ... N
) ( 1  / 
i )  <_  (
( log `  N
)  +  1 ) )
17114nnrpd 11339 . . . . . . . 8  |-  ( ( N  e.  NN  /\  i  e.  ( 1 ... N ) )  ->  i  e.  RR+ )
172171rpreccld 11351 . . . . . . 7  |-  ( ( N  e.  NN  /\  i  e.  ( 1 ... N ) )  ->  ( 1  / 
i )  e.  RR+ )
173172rpge0d 11345 . . . . . 6  |-  ( ( N  e.  NN  /\  i  e.  ( 1 ... N ) )  ->  0  <_  (
1  /  i ) )
1742, 15, 173fsumge0 13833 . . . . 5  |-  ( N  e.  NN  ->  0  <_ 
sum_ i  e.  ( 1 ... N ) ( 1  /  i
) )
17549a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  0  e.  RR )
176 log1 23400 . . . . . . 7  |-  ( log `  1 )  =  0
177 1rp 11306 . . . . . . . . 9  |-  1  e.  RR+
178 logleb 23417 . . . . . . . . 9  |-  ( ( 1  e.  RR+  /\  N  e.  RR+ )  ->  (
1  <_  N  <->  ( log `  1 )  <_  ( log `  N ) ) )
179177, 18, 178sylancr 667 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1  <_  N  <->  ( log `  1 )  <_  ( log `  N ) ) )
180167, 179mpbid 213 . . . . . . 7  |-  ( N  e.  NN  ->  ( log `  1 )  <_ 
( log `  N
) )
181176, 180syl5eqbrr 4460 . . . . . 6  |-  ( N  e.  NN  ->  0  <_  ( log `  N
) )
18219lep1d 10538 . . . . . 6  |-  ( N  e.  NN  ->  ( log `  N )  <_ 
( ( log `  N
)  +  1 ) )
183175, 19, 21, 181, 182letrd 9791 . . . . 5  |-  ( N  e.  NN  ->  0  <_  ( ( log `  N
)  +  1 ) )
18416, 21, 174, 183le2sqd 12448 . . . 4  |-  ( N  e.  NN  ->  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i )  <_  ( ( log `  N )  +  1 )  <->  ( sum_ i  e.  ( 1 ... N
) ( 1  / 
i ) ^ 2 )  <_  ( (
( log `  N
)  +  1 ) ^ 2 ) ) )
185170, 184mpbid 213 . . 3  |-  ( N  e.  NN  ->  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i ) ^ 2 )  <_ 
( ( ( log `  N )  +  1 ) ^ 2 ) )
18612, 17, 22, 161, 185letrd 9791 . 2  |-  ( N  e.  NN  ->  (
2  x.  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
) )  <_  (
( ( log `  N
)  +  1 ) ^ 2 ) )
1871a1i 11 . . 3  |-  ( N  e.  NN  ->  2  e.  RR )
188 2pos 10701 . . . 4  |-  0  <  2
189188a1i 11 . . 3  |-  ( N  e.  NN  ->  0  <  2 )
190 lemuldiv2 10486 . . 3  |-  ( (
sum_ n  e.  (
1 ... N ) ( ( log `  n
)  /  n )  e.  RR  /\  (
( ( log `  N
)  +  1 ) ^ 2 )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
( ( 2  x. 
sum_ n  e.  (
1 ... N ) ( ( log `  n
)  /  n ) )  <_  ( (
( log `  N
)  +  1 ) ^ 2 )  <->  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
)  <_  ( (
( ( log `  N
)  +  1 ) ^ 2 )  / 
2 ) ) )
19110, 22, 187, 189, 190syl112anc 1268 . 2  |-  ( N  e.  NN  ->  (
( 2  x.  sum_ n  e.  ( 1 ... N ) ( ( log `  n )  /  n ) )  <_  ( ( ( log `  N )  +  1 ) ^
2 )  <->  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
)  <_  ( (
( ( log `  N
)  +  1 ) ^ 2 )  / 
2 ) ) )
192186, 191mpbid 213 1  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
)  <_  ( (
( ( log `  N
)  +  1 ) ^ 2 )  / 
2 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870    C_ wss 3442   (/)c0 3767   class class class wbr 4426   ` cfv 5601  (class class class)co 6305   CCcc 9536   RRcr 9537   0cc0 9538   1c1 9539    + caddc 9541    x. cmul 9543    < clt 9674    <_ cle 9675    - cmin 9859    / cdiv 10268   NNcn 10609   2c2 10659   NN0cn0 10869   ZZcz 10937   ZZ>=cuz 11159   RR+crp 11302   [,]cicc 11638   ...cfz 11782  ..^cfzo 11913   |_cfl 12023   ^cexp 12269   sum_csu 13730   logclog 23369   gammacem 23782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616  ax-addf 9617  ax-mulf 9618
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-2o 7191  df-oadd 7194  df-er 7371  df-map 7482  df-pm 7483  df-ixp 7531  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-fsupp 7890  df-fi 7931  df-sup 7962  df-inf 7963  df-oi 8025  df-card 8372  df-cda 8596  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ioc 11640  df-ico 11641  df-icc 11642  df-fz 11783  df-fzo 11914  df-fl 12025  df-mod 12094  df-seq 12211  df-exp 12270  df-fac 12457  df-bc 12485  df-hash 12513  df-shft 13109  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-limsup 13504  df-clim 13530  df-rlim 13531  df-sum 13731  df-ef 14099  df-e 14100  df-sin 14101  df-cos 14102  df-pi 14104  df-struct 15086  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15165  df-mulr 15166  df-starv 15167  df-sca 15168  df-vsca 15169  df-ip 15170  df-tset 15171  df-ple 15172  df-ds 15174  df-unif 15175  df-hom 15176  df-cco 15177  df-rest 15280  df-topn 15281  df-0g 15299  df-gsum 15300  df-topgen 15301  df-pt 15302  df-prds 15305  df-xrs 15359  df-qtop 15364  df-imas 15365  df-xps 15367  df-mre 15443  df-mrc 15444  df-acs 15446  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-submnd 16534  df-mulg 16627  df-cntz 16922  df-cmn 17367  df-psmet 18897  df-xmet 18898  df-met 18899  df-bl 18900  df-mopn 18901  df-fbas 18902  df-fg 18903  df-cnfld 18906  df-top 19852  df-bases 19853  df-topon 19854  df-topsp 19855  df-cld 19965  df-ntr 19966  df-cls 19967  df-nei 20045  df-lp 20083  df-perf 20084  df-cn 20174  df-cnp 20175  df-haus 20262  df-tx 20508  df-hmeo 20701  df-fil 20792  df-fm 20884  df-flim 20885  df-flf 20886  df-xms 21266  df-ms 21267  df-tms 21268  df-cncf 21806  df-limc 22698  df-dv 22699  df-log 23371  df-em 23783
This theorem is referenced by:  pntlemk  24307
  Copyright terms: Public domain W3C validator