MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdivbnd Structured version   Unicode version

Theorem logdivbnd 22780
Description: A bound on a sum of logs, used in pntlemk 22830. This is not as precise as logdivsum 22757 in its asymptotic behavior, but it is valid for all  N and does not require a limit value. (Contributed by Mario Carneiro, 13-Apr-2016.)
Assertion
Ref Expression
logdivbnd  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
)  <_  ( (
( ( log `  N
)  +  1 ) ^ 2 )  / 
2 ) )
Distinct variable group:    n, N

Proof of Theorem logdivbnd
Dummy variables  i  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 10383 . . . 4  |-  2  e.  RR
2 fzfid 11787 . . . . 5  |-  ( N  e.  NN  ->  (
1 ... N )  e. 
Fin )
3 elfzuz 11441 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... N )  ->  n  e.  ( ZZ>= `  1 )
)
43adantl 466 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  n  e.  (
ZZ>= `  1 ) )
5 nnuz 10888 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
64, 5syl6eleqr 2529 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  n  e.  NN )
76nnrpd 11018 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  n  e.  RR+ )
87relogcld 22047 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( log `  n
)  e.  RR )
98, 6nndivred 10362 . . . . 5  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( ( log `  n )  /  n
)  e.  RR )
102, 9fsumrecl 13203 . . . 4  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
)  e.  RR )
11 remulcl 9359 . . . 4  |-  ( ( 2  e.  RR  /\  sum_
n  e.  ( 1 ... N ) ( ( log `  n
)  /  n )  e.  RR )  -> 
( 2  x.  sum_ n  e.  ( 1 ... N ) ( ( log `  n )  /  n ) )  e.  RR )
121, 10, 11sylancr 663 . . 3  |-  ( N  e.  NN  ->  (
2  x.  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
) )  e.  RR )
13 elfznn 11470 . . . . . . 7  |-  ( i  e.  ( 1 ... N )  ->  i  e.  NN )
1413adantl 466 . . . . . 6  |-  ( ( N  e.  NN  /\  i  e.  ( 1 ... N ) )  ->  i  e.  NN )
1514nnrecred 10359 . . . . 5  |-  ( ( N  e.  NN  /\  i  e.  ( 1 ... N ) )  ->  ( 1  / 
i )  e.  RR )
162, 15fsumrecl 13203 . . . 4  |-  ( N  e.  NN  ->  sum_ i  e.  ( 1 ... N
) ( 1  / 
i )  e.  RR )
1716resqcld 12026 . . 3  |-  ( N  e.  NN  ->  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i ) ^ 2 )  e.  RR )
18 nnrp 10992 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  RR+ )
1918relogcld 22047 . . . . 5  |-  ( N  e.  NN  ->  ( log `  N )  e.  RR )
20 peano2re 9534 . . . . 5  |-  ( ( log `  N )  e.  RR  ->  (
( log `  N
)  +  1 )  e.  RR )
2119, 20syl 16 . . . 4  |-  ( N  e.  NN  ->  (
( log `  N
)  +  1 )  e.  RR )
2221resqcld 12026 . . 3  |-  ( N  e.  NN  ->  (
( ( log `  N
)  +  1 ) ^ 2 )  e.  RR )
2310recnd 9404 . . . . 5  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
)  e.  CC )
24232timesd 10559 . . . 4  |-  ( N  e.  NN  ->  (
2  x.  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
) )  =  (
sum_ n  e.  (
1 ... N ) ( ( log `  n
)  /  n )  +  sum_ n  e.  ( 1 ... N ) ( ( log `  n
)  /  n ) ) )
25 fzfid 11787 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( 1 ... n )  e.  Fin )
26 elfznn 11470 . . . . . . . . . . 11  |-  ( i  e.  ( 1 ... n )  ->  i  e.  NN )
2726adantl 466 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  /\  i  e.  ( 1 ... n ) )  ->  i  e.  NN )
2827nnrecred 10359 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  /\  i  e.  ( 1 ... n ) )  ->  ( 1  /  i )  e.  RR )
2925, 28fsumrecl 13203 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  sum_ i  e.  ( 1 ... n ) ( 1  /  i
)  e.  RR )
3029, 6nndivred 10362 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... n
) ( 1  / 
i )  /  n
)  e.  RR )
312, 30fsumrecl 13203 . . . . . 6  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( sum_ i  e.  ( 1 ... n
) ( 1  / 
i )  /  n
)  e.  RR )
32 fzfid 11787 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( 1 ... ( n  -  1 ) )  e.  Fin )
33 elfznn 11470 . . . . . . . . . . 11  |-  ( i  e.  ( 1 ... ( n  -  1 ) )  ->  i  e.  NN )
3433adantl 466 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  /\  i  e.  ( 1 ... ( n  -  1 ) ) )  ->  i  e.  NN )
3534nnrecred 10359 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  /\  i  e.  ( 1 ... ( n  -  1 ) ) )  ->  ( 1  /  i )  e.  RR )
3632, 35fsumrecl 13203 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  e.  RR )
3736, 6nndivred 10362 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  /  n
)  e.  RR )
382, 37fsumrecl 13203 . . . . . 6  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  /  n
)  e.  RR )
396nncnd 10330 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  n  e.  CC )
40 ax-1cn 9332 . . . . . . . . . . . . . . 15  |-  1  e.  CC
41 npcan 9611 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( ( n  - 
1 )  +  1 )  =  n )
4239, 40, 41sylancl 662 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( ( n  -  1 )  +  1 )  =  n )
4342fveq2d 5690 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( log `  (
( n  -  1 )  +  1 ) )  =  ( log `  n ) )
4443oveq2d 6102 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  -  ( log `  ( ( n  -  1 )  +  1 ) ) )  =  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  -  ( log `  n ) ) )
45 nnm1nn0 10613 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
n  -  1 )  e.  NN0 )
46 harmonicbnd3 22376 . . . . . . . . . . . . 13  |-  ( ( n  -  1 )  e.  NN0  ->  ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  -  ( log `  (
( n  -  1 )  +  1 ) ) )  e.  ( 0 [,] gamma )
)
476, 45, 463syl 20 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  -  ( log `  ( ( n  -  1 )  +  1 ) ) )  e.  ( 0 [,]
gamma ) )
4844, 47eqeltrrd 2513 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  -  ( log `  n ) )  e.  ( 0 [,]
gamma ) )
49 0re 9378 . . . . . . . . . . . . 13  |-  0  e.  RR
50 emre 22374 . . . . . . . . . . . . 13  |-  gamma  e.  RR
5149, 50elicc2i 11353 . . . . . . . . . . . 12  |-  ( (
sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  -  ( log `  n ) )  e.  ( 0 [,] gamma )  <-> 
( ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  -  ( log `  n ) )  e.  RR  /\  0  <_  ( sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  -  ( log `  n ) )  /\  ( sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  -  ( log `  n ) )  <_  gamma ) )
5251simp2bi 1004 . . . . . . . . . . 11  |-  ( (
sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  -  ( log `  n ) )  e.  ( 0 [,] gamma )  ->  0  <_  ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  -  ( log `  n
) ) )
5348, 52syl 16 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  0  <_  ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  -  ( log `  n
) ) )
5436, 8subge0d 9921 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( 0  <_ 
( sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  -  ( log `  n ) )  <->  ( log `  n )  <_  sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i ) ) )
5553, 54mpbid 210 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( log `  n
)  <_  sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i ) )
568, 36, 7, 55lediv1dd 11073 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( ( log `  n )  /  n
)  <_  ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  /  n ) )
5727nnrpd 11018 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  /\  i  e.  ( 1 ... n ) )  ->  i  e.  RR+ )
5857rpreccld 11029 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  /\  i  e.  ( 1 ... n ) )  ->  ( 1  /  i )  e.  RR+ )
5958rpge0d 11023 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  /\  i  e.  ( 1 ... n ) )  ->  0  <_  ( 1  /  i ) )
60 elfzelz 11445 . . . . . . . . . . . . . 14  |-  ( n  e.  ( 1 ... N )  ->  n  e.  ZZ )
6160adantl 466 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  n  e.  ZZ )
62 peano2zm 10680 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  (
n  -  1 )  e.  ZZ )
6361, 62syl 16 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( n  - 
1 )  e.  ZZ )
646nnred 10329 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  n  e.  RR )
6564lem1d 10258 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( n  - 
1 )  <_  n
)
66 eluz2 10859 . . . . . . . . . . . 12  |-  ( n  e.  ( ZZ>= `  (
n  -  1 ) )  <->  ( ( n  -  1 )  e.  ZZ  /\  n  e.  ZZ  /\  ( n  -  1 )  <_  n ) )
6763, 61, 65, 66syl3anbrc 1172 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  n  e.  (
ZZ>= `  ( n  - 
1 ) ) )
68 fzss2 11490 . . . . . . . . . . 11  |-  ( n  e.  ( ZZ>= `  (
n  -  1 ) )  ->  ( 1 ... ( n  - 
1 ) )  C_  ( 1 ... n
) )
6967, 68syl 16 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( 1 ... ( n  -  1 ) )  C_  (
1 ... n ) )
7025, 28, 59, 69fsumless 13251 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  <_  sum_ i  e.  ( 1 ... n
) ( 1  / 
i ) )
716nngt0d 10357 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  0  <  n
)
72 lediv1 10186 . . . . . . . . . 10  |-  ( (
sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  e.  RR  /\  sum_ i  e.  ( 1 ... n ) ( 1  /  i )  e.  RR  /\  (
n  e.  RR  /\  0  <  n ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  <_  sum_ i  e.  ( 1 ... n
) ( 1  / 
i )  <->  ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  /  n )  <_ 
( sum_ i  e.  ( 1 ... n ) ( 1  /  i
)  /  n ) ) )
7336, 29, 64, 71, 72syl112anc 1222 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  <_  sum_ i  e.  ( 1 ... n
) ( 1  / 
i )  <->  ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  /  n )  <_ 
( sum_ i  e.  ( 1 ... n ) ( 1  /  i
)  /  n ) ) )
7470, 73mpbid 210 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  /  n
)  <_  ( sum_ i  e.  ( 1 ... n ) ( 1  /  i )  /  n ) )
759, 37, 30, 56, 74letrd 9520 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( ( log `  n )  /  n
)  <_  ( sum_ i  e.  ( 1 ... n ) ( 1  /  i )  /  n ) )
762, 9, 30, 75fsumle 13254 . . . . . 6  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
)  <_  sum_ n  e.  ( 1 ... N
) ( sum_ i  e.  ( 1 ... n
) ( 1  / 
i )  /  n
) )
772, 9, 37, 56fsumle 13254 . . . . . 6  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
)  <_  sum_ n  e.  ( 1 ... N
) ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  /  n
) )
7810, 10, 31, 38, 76, 77le2addd 9949 . . . . 5  |-  ( N  e.  NN  ->  ( sum_ n  e.  ( 1 ... N ) ( ( log `  n
)  /  n )  +  sum_ n  e.  ( 1 ... N ) ( ( log `  n
)  /  n ) )  <_  ( sum_ n  e.  ( 1 ... N ) ( sum_ i  e.  ( 1 ... n ) ( 1  /  i )  /  n )  + 
sum_ n  e.  (
1 ... N ) (
sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  /  n ) ) )
79 oveq1 6093 . . . . . . . . . . 11  |-  ( m  =  n  ->  (
m  -  1 )  =  ( n  - 
1 ) )
8079oveq2d 6102 . . . . . . . . . 10  |-  ( m  =  n  ->  (
1 ... ( m  - 
1 ) )  =  ( 1 ... (
n  -  1 ) ) )
8180sumeq1d 13170 . . . . . . . . 9  |-  ( m  =  n  ->  sum_ i  e.  ( 1 ... (
m  -  1 ) ) ( 1  / 
i )  =  sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i ) )
8281, 81jca 532 . . . . . . . 8  |-  ( m  =  n  ->  ( sum_ i  e.  ( 1 ... ( m  - 
1 ) ) ( 1  /  i )  =  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  /\  sum_ i  e.  ( 1 ... (
m  -  1 ) ) ( 1  / 
i )  =  sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i ) ) )
83 oveq1 6093 . . . . . . . . . . 11  |-  ( m  =  ( n  + 
1 )  ->  (
m  -  1 )  =  ( ( n  +  1 )  - 
1 ) )
8483oveq2d 6102 . . . . . . . . . 10  |-  ( m  =  ( n  + 
1 )  ->  (
1 ... ( m  - 
1 ) )  =  ( 1 ... (
( n  +  1 )  -  1 ) ) )
8584sumeq1d 13170 . . . . . . . . 9  |-  ( m  =  ( n  + 
1 )  ->  sum_ i  e.  ( 1 ... (
m  -  1 ) ) ( 1  / 
i )  =  sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i ) )
8685, 85jca 532 . . . . . . . 8  |-  ( m  =  ( n  + 
1 )  ->  ( sum_ i  e.  ( 1 ... ( m  - 
1 ) ) ( 1  /  i )  =  sum_ i  e.  ( 1 ... ( ( n  +  1 )  -  1 ) ) ( 1  /  i
)  /\  sum_ i  e.  ( 1 ... (
m  -  1 ) ) ( 1  / 
i )  =  sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i ) ) )
87 oveq1 6093 . . . . . . . . . . . . . 14  |-  ( m  =  1  ->  (
m  -  1 )  =  ( 1  -  1 ) )
88 1m1e0 10382 . . . . . . . . . . . . . 14  |-  ( 1  -  1 )  =  0
8987, 88syl6eq 2486 . . . . . . . . . . . . 13  |-  ( m  =  1  ->  (
m  -  1 )  =  0 )
9089oveq2d 6102 . . . . . . . . . . . 12  |-  ( m  =  1  ->  (
1 ... ( m  - 
1 ) )  =  ( 1 ... 0
) )
91 fz10 11462 . . . . . . . . . . . 12  |-  ( 1 ... 0 )  =  (/)
9290, 91syl6eq 2486 . . . . . . . . . . 11  |-  ( m  =  1  ->  (
1 ... ( m  - 
1 ) )  =  (/) )
9392sumeq1d 13170 . . . . . . . . . 10  |-  ( m  =  1  ->  sum_ i  e.  ( 1 ... (
m  -  1 ) ) ( 1  / 
i )  =  sum_ i  e.  (/)  ( 1  /  i ) )
94 sum0 13190 . . . . . . . . . 10  |-  sum_ i  e.  (/)  ( 1  / 
i )  =  0
9593, 94syl6eq 2486 . . . . . . . . 9  |-  ( m  =  1  ->  sum_ i  e.  ( 1 ... (
m  -  1 ) ) ( 1  / 
i )  =  0 )
9695, 95jca 532 . . . . . . . 8  |-  ( m  =  1  ->  ( sum_ i  e.  ( 1 ... ( m  - 
1 ) ) ( 1  /  i )  =  0  /\  sum_ i  e.  ( 1 ... ( m  - 
1 ) ) ( 1  /  i )  =  0 ) )
97 oveq1 6093 . . . . . . . . . . 11  |-  ( m  =  ( N  + 
1 )  ->  (
m  -  1 )  =  ( ( N  +  1 )  - 
1 ) )
9897oveq2d 6102 . . . . . . . . . 10  |-  ( m  =  ( N  + 
1 )  ->  (
1 ... ( m  - 
1 ) )  =  ( 1 ... (
( N  +  1 )  -  1 ) ) )
9998sumeq1d 13170 . . . . . . . . 9  |-  ( m  =  ( N  + 
1 )  ->  sum_ i  e.  ( 1 ... (
m  -  1 ) ) ( 1  / 
i )  =  sum_ i  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) ) ( 1  /  i ) )
10099, 99jca 532 . . . . . . . 8  |-  ( m  =  ( N  + 
1 )  ->  ( sum_ i  e.  ( 1 ... ( m  - 
1 ) ) ( 1  /  i )  =  sum_ i  e.  ( 1 ... ( ( N  +  1 )  -  1 ) ) ( 1  /  i
)  /\  sum_ i  e.  ( 1 ... (
m  -  1 ) ) ( 1  / 
i )  =  sum_ i  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) ) ( 1  /  i ) ) )
101 peano2nn 10326 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
102101, 5syl6eleq 2528 . . . . . . . 8  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  ( ZZ>= `  1
) )
103 fzfid 11787 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  m  e.  ( 1 ... ( N  + 
1 ) ) )  ->  ( 1 ... ( m  -  1 ) )  e.  Fin )
104 elfznn 11470 . . . . . . . . . . . 12  |-  ( i  e.  ( 1 ... ( m  -  1 ) )  ->  i  e.  NN )
105104adantl 466 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  m  e.  ( 1 ... ( N  + 
1 ) ) )  /\  i  e.  ( 1 ... ( m  -  1 ) ) )  ->  i  e.  NN )
106105nnrecred 10359 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  m  e.  ( 1 ... ( N  + 
1 ) ) )  /\  i  e.  ( 1 ... ( m  -  1 ) ) )  ->  ( 1  /  i )  e.  RR )
107103, 106fsumrecl 13203 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  m  e.  ( 1 ... ( N  + 
1 ) ) )  ->  sum_ i  e.  ( 1 ... ( m  -  1 ) ) ( 1  /  i
)  e.  RR )
108107recnd 9404 . . . . . . . 8  |-  ( ( N  e.  NN  /\  m  e.  ( 1 ... ( N  + 
1 ) ) )  ->  sum_ i  e.  ( 1 ... ( m  -  1 ) ) ( 1  /  i
)  e.  CC )
10982, 86, 96, 100, 102, 108, 108fsumparts 13261 . . . . . . 7  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1..^ ( N  +  1 ) ) ( sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  x.  ( sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i )  -  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
) ) )  =  ( ( ( sum_ i  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) ) ( 1  /  i )  x.  sum_ i  e.  ( 1 ... ( ( N  +  1 )  -  1 ) ) ( 1  /  i
) )  -  (
0  x.  0 ) )  -  sum_ n  e.  ( 1..^ ( N  +  1 ) ) ( ( sum_ i  e.  ( 1 ... (
( n  +  1 )  -  1 ) ) ( 1  / 
i )  -  sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i ) )  x.  sum_ i  e.  ( 1 ... (
( n  +  1 )  -  1 ) ) ( 1  / 
i ) ) ) )
110 nnz 10660 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  ZZ )
111 fzval3 11597 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
1 ... N )  =  ( 1..^ ( N  +  1 ) ) )
112110, 111syl 16 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
1 ... N )  =  ( 1..^ ( N  +  1 ) ) )
113112eqcomd 2443 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1..^ ( N  + 
1 ) )  =  ( 1 ... N
) )
114 pncan 9608 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( ( n  + 
1 )  -  1 )  =  n )
11539, 40, 114sylancl 662 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( ( n  +  1 )  - 
1 )  =  n )
116115oveq2d 6102 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( 1 ... ( ( n  + 
1 )  -  1 ) )  =  ( 1 ... n ) )
117116sumeq1d 13170 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  sum_ i  e.  ( 1 ... ( ( n  +  1 )  -  1 ) ) ( 1  /  i
)  =  sum_ i  e.  ( 1 ... n
) ( 1  / 
i ) )
11828recnd 9404 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  /\  i  e.  ( 1 ... n ) )  ->  ( 1  /  i )  e.  CC )
119 oveq2 6094 . . . . . . . . . . . . . 14  |-  ( i  =  n  ->  (
1  /  i )  =  ( 1  /  n ) )
1204, 118, 119fsumm1 13212 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  sum_ i  e.  ( 1 ... n ) ( 1  /  i
)  =  ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  +  ( 1  /  n ) ) )
121117, 120eqtrd 2470 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  sum_ i  e.  ( 1 ... ( ( n  +  1 )  -  1 ) ) ( 1  /  i
)  =  ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  +  ( 1  /  n ) ) )
122121oveq1d 6101 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
( n  +  1 )  -  1 ) ) ( 1  / 
i )  -  sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i ) )  =  ( (
sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  +  ( 1  /  n ) )  -  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
) ) )
12336recnd 9404 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  e.  CC )
1246nnrecred 10359 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( 1  /  n )  e.  RR )
125124recnd 9404 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( 1  /  n )  e.  CC )
126123, 125pncan2d 9713 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  +  ( 1  /  n ) )  -  sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i ) )  =  ( 1  /  n ) )
127122, 126eqtrd 2470 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
( n  +  1 )  -  1 ) ) ( 1  / 
i )  -  sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i ) )  =  ( 1  /  n ) )
128127oveq2d 6102 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  x.  ( sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i )  -  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
) ) )  =  ( sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  x.  ( 1  /  n ) ) )
1296nnne0d 10358 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  n  =/=  0
)
130123, 39, 129divrecd 10102 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  /  n
)  =  ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  x.  ( 1  /  n ) ) )
131128, 130eqtr4d 2473 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  x.  ( sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i )  -  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
) ) )  =  ( sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  /  n ) )
132113, 131sumeq12rdv 13176 . . . . . . 7  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1..^ ( N  +  1 ) ) ( sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  x.  ( sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i )  -  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
) ) )  = 
sum_ n  e.  (
1 ... N ) (
sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  /  n ) )
133 nncn 10322 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  N  e.  CC )
134 pncan 9608 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
135133, 40, 134sylancl 662 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( N  +  1 )  -  1 )  =  N )
136135oveq2d 6102 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
1 ... ( ( N  +  1 )  - 
1 ) )  =  ( 1 ... N
) )
137136sumeq1d 13170 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  sum_ i  e.  ( 1 ... (
( N  +  1 )  -  1 ) ) ( 1  / 
i )  =  sum_ i  e.  ( 1 ... N ) ( 1  /  i ) )
138137, 137oveq12d 6104 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( sum_ i  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) ) ( 1  /  i )  x.  sum_ i  e.  ( 1 ... ( ( N  +  1 )  -  1 ) ) ( 1  /  i
) )  =  (
sum_ i  e.  ( 1 ... N ) ( 1  /  i
)  x.  sum_ i  e.  ( 1 ... N
) ( 1  / 
i ) ) )
13916recnd 9404 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  sum_ i  e.  ( 1 ... N
) ( 1  / 
i )  e.  CC )
140139sqvald 11997 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i ) ^ 2 )  =  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i
)  x.  sum_ i  e.  ( 1 ... N
) ( 1  / 
i ) ) )
141138, 140eqtr4d 2473 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( sum_ i  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) ) ( 1  /  i )  x.  sum_ i  e.  ( 1 ... ( ( N  +  1 )  -  1 ) ) ( 1  /  i
) )  =  (
sum_ i  e.  ( 1 ... N ) ( 1  /  i
) ^ 2 ) )
142 0cn 9370 . . . . . . . . . . . 12  |-  0  e.  CC
143142mul01i 9551 . . . . . . . . . . 11  |-  ( 0  x.  0 )  =  0
144143a1i 11 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
0  x.  0 )  =  0 )
145141, 144oveq12d 6104 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( sum_ i  e.  ( 1 ... ( ( N  +  1 )  -  1 ) ) ( 1  /  i
)  x.  sum_ i  e.  ( 1 ... (
( N  +  1 )  -  1 ) ) ( 1  / 
i ) )  -  ( 0  x.  0 ) )  =  ( ( sum_ i  e.  ( 1 ... N ) ( 1  /  i
) ^ 2 )  -  0 ) )
146139sqcld 11998 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i ) ^ 2 )  e.  CC )
147146subid1d 9700 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( sum_ i  e.  ( 1 ... N ) ( 1  /  i
) ^ 2 )  -  0 )  =  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i
) ^ 2 ) )
148145, 147eqtrd 2470 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( sum_ i  e.  ( 1 ... ( ( N  +  1 )  -  1 ) ) ( 1  /  i
)  x.  sum_ i  e.  ( 1 ... (
( N  +  1 )  -  1 ) ) ( 1  / 
i ) )  -  ( 0  x.  0 ) )  =  (
sum_ i  e.  ( 1 ... N ) ( 1  /  i
) ^ 2 ) )
149127, 117oveq12d 6104 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( ( sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i )  -  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
) )  x.  sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i ) )  =  ( ( 1  /  n )  x.  sum_ i  e.  ( 1 ... n ) ( 1  /  i
) ) )
15029recnd 9404 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  sum_ i  e.  ( 1 ... n ) ( 1  /  i
)  e.  CC )
151150, 39, 129divrec2d 10103 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... n
) ( 1  / 
i )  /  n
)  =  ( ( 1  /  n )  x.  sum_ i  e.  ( 1 ... n ) ( 1  /  i
) ) )
152149, 151eqtr4d 2473 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( ( sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i )  -  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
) )  x.  sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i ) )  =  ( sum_ i  e.  ( 1 ... n ) ( 1  /  i )  /  n ) )
153113, 152sumeq12rdv 13176 . . . . . . . 8  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1..^ ( N  +  1 ) ) ( ( sum_ i  e.  ( 1 ... (
( n  +  1 )  -  1 ) ) ( 1  / 
i )  -  sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i ) )  x.  sum_ i  e.  ( 1 ... (
( n  +  1 )  -  1 ) ) ( 1  / 
i ) )  = 
sum_ n  e.  (
1 ... N ) (
sum_ i  e.  ( 1 ... n ) ( 1  /  i
)  /  n ) )
154148, 153oveq12d 6104 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( sum_ i  e.  ( 1 ... (
( N  +  1 )  -  1 ) ) ( 1  / 
i )  x.  sum_ i  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) ) ( 1  /  i ) )  -  ( 0  x.  0 ) )  -  sum_ n  e.  ( 1..^ ( N  + 
1 ) ) ( ( sum_ i  e.  ( 1 ... ( ( n  +  1 )  -  1 ) ) ( 1  /  i
)  -  sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i ) )  x. 
sum_ i  e.  ( 1 ... ( ( n  +  1 )  -  1 ) ) ( 1  /  i
) ) )  =  ( ( sum_ i  e.  ( 1 ... N
) ( 1  / 
i ) ^ 2 )  -  sum_ n  e.  ( 1 ... N
) ( sum_ i  e.  ( 1 ... n
) ( 1  / 
i )  /  n
) ) )
155109, 132, 1543eqtr3rd 2479 . . . . . 6  |-  ( N  e.  NN  ->  (
( sum_ i  e.  ( 1 ... N ) ( 1  /  i
) ^ 2 )  -  sum_ n  e.  ( 1 ... N ) ( sum_ i  e.  ( 1 ... n ) ( 1  /  i
)  /  n ) )  =  sum_ n  e.  ( 1 ... N
) ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  /  n
) )
15631recnd 9404 . . . . . . 7  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( sum_ i  e.  ( 1 ... n
) ( 1  / 
i )  /  n
)  e.  CC )
15738recnd 9404 . . . . . . 7  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  /  n
)  e.  CC )
158146, 156, 157subaddd 9729 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( sum_ i  e.  ( 1 ... N
) ( 1  / 
i ) ^ 2 )  -  sum_ n  e.  ( 1 ... N
) ( sum_ i  e.  ( 1 ... n
) ( 1  / 
i )  /  n
) )  =  sum_ n  e.  ( 1 ... N ) ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  /  n )  <->  ( sum_ n  e.  ( 1 ... N ) ( sum_ i  e.  ( 1 ... n ) ( 1  /  i )  /  n )  + 
sum_ n  e.  (
1 ... N ) (
sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  /  n ) )  =  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i ) ^ 2 ) ) )
159155, 158mpbid 210 . . . . 5  |-  ( N  e.  NN  ->  ( sum_ n  e.  ( 1 ... N ) (
sum_ i  e.  ( 1 ... n ) ( 1  /  i
)  /  n )  +  sum_ n  e.  ( 1 ... N ) ( sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  /  n ) )  =  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i ) ^ 2 ) )
16078, 159breqtrd 4311 . . . 4  |-  ( N  e.  NN  ->  ( sum_ n  e.  ( 1 ... N ) ( ( log `  n
)  /  n )  +  sum_ n  e.  ( 1 ... N ) ( ( log `  n
)  /  n ) )  <_  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i ) ^ 2 ) )
16124, 160eqbrtrd 4307 . . 3  |-  ( N  e.  NN  ->  (
2  x.  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
) )  <_  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i ) ^ 2 ) )
162 flid 11649 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( |_ `  N )  =  N )
163110, 162syl 16 . . . . . . 7  |-  ( N  e.  NN  ->  ( |_ `  N )  =  N )
164163oveq2d 6102 . . . . . 6  |-  ( N  e.  NN  ->  (
1 ... ( |_ `  N ) )  =  ( 1 ... N
) )
165164sumeq1d 13170 . . . . 5  |-  ( N  e.  NN  ->  sum_ i  e.  ( 1 ... ( |_ `  N ) ) ( 1  /  i
)  =  sum_ i  e.  ( 1 ... N
) ( 1  / 
i ) )
166 nnre 10321 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  RR )
167 nnge1 10340 . . . . . 6  |-  ( N  e.  NN  ->  1  <_  N )
168 harmonicubnd 22378 . . . . . 6  |-  ( ( N  e.  RR  /\  1  <_  N )  ->  sum_ i  e.  ( 1 ... ( |_ `  N ) ) ( 1  /  i )  <_  ( ( log `  N )  +  1 ) )
169166, 167, 168syl2anc 661 . . . . 5  |-  ( N  e.  NN  ->  sum_ i  e.  ( 1 ... ( |_ `  N ) ) ( 1  /  i
)  <_  ( ( log `  N )  +  1 ) )
170165, 169eqbrtrrd 4309 . . . 4  |-  ( N  e.  NN  ->  sum_ i  e.  ( 1 ... N
) ( 1  / 
i )  <_  (
( log `  N
)  +  1 ) )
17114nnrpd 11018 . . . . . . . 8  |-  ( ( N  e.  NN  /\  i  e.  ( 1 ... N ) )  ->  i  e.  RR+ )
172171rpreccld 11029 . . . . . . 7  |-  ( ( N  e.  NN  /\  i  e.  ( 1 ... N ) )  ->  ( 1  / 
i )  e.  RR+ )
173172rpge0d 11023 . . . . . 6  |-  ( ( N  e.  NN  /\  i  e.  ( 1 ... N ) )  ->  0  <_  (
1  /  i ) )
1742, 15, 173fsumge0 13250 . . . . 5  |-  ( N  e.  NN  ->  0  <_ 
sum_ i  e.  ( 1 ... N ) ( 1  /  i
) )
17549a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  0  e.  RR )
176 log1 22009 . . . . . . 7  |-  ( log `  1 )  =  0
177 1rp 10987 . . . . . . . . 9  |-  1  e.  RR+
178 logleb 22027 . . . . . . . . 9  |-  ( ( 1  e.  RR+  /\  N  e.  RR+ )  ->  (
1  <_  N  <->  ( log `  1 )  <_  ( log `  N ) ) )
179177, 18, 178sylancr 663 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1  <_  N  <->  ( log `  1 )  <_  ( log `  N ) ) )
180167, 179mpbid 210 . . . . . . 7  |-  ( N  e.  NN  ->  ( log `  1 )  <_ 
( log `  N
) )
181176, 180syl5eqbrr 4321 . . . . . 6  |-  ( N  e.  NN  ->  0  <_  ( log `  N
) )
18219lep1d 10256 . . . . . 6  |-  ( N  e.  NN  ->  ( log `  N )  <_ 
( ( log `  N
)  +  1 ) )
183175, 19, 21, 181, 182letrd 9520 . . . . 5  |-  ( N  e.  NN  ->  0  <_  ( ( log `  N
)  +  1 ) )
18416, 21, 174, 183le2sqd 12035 . . . 4  |-  ( N  e.  NN  ->  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i )  <_  ( ( log `  N )  +  1 )  <->  ( sum_ i  e.  ( 1 ... N
) ( 1  / 
i ) ^ 2 )  <_  ( (
( log `  N
)  +  1 ) ^ 2 ) ) )
185170, 184mpbid 210 . . 3  |-  ( N  e.  NN  ->  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i ) ^ 2 )  <_ 
( ( ( log `  N )  +  1 ) ^ 2 ) )
18612, 17, 22, 161, 185letrd 9520 . 2  |-  ( N  e.  NN  ->  (
2  x.  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
) )  <_  (
( ( log `  N
)  +  1 ) ^ 2 ) )
1871a1i 11 . . 3  |-  ( N  e.  NN  ->  2  e.  RR )
188 2pos 10405 . . . 4  |-  0  <  2
189188a1i 11 . . 3  |-  ( N  e.  NN  ->  0  <  2 )
190 lemuldiv2 10204 . . 3  |-  ( (
sum_ n  e.  (
1 ... N ) ( ( log `  n
)  /  n )  e.  RR  /\  (
( ( log `  N
)  +  1 ) ^ 2 )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
( ( 2  x. 
sum_ n  e.  (
1 ... N ) ( ( log `  n
)  /  n ) )  <_  ( (
( log `  N
)  +  1 ) ^ 2 )  <->  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
)  <_  ( (
( ( log `  N
)  +  1 ) ^ 2 )  / 
2 ) ) )
19110, 22, 187, 189, 190syl112anc 1222 . 2  |-  ( N  e.  NN  ->  (
( 2  x.  sum_ n  e.  ( 1 ... N ) ( ( log `  n )  /  n ) )  <_  ( ( ( log `  N )  +  1 ) ^
2 )  <->  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
)  <_  ( (
( ( log `  N
)  +  1 ) ^ 2 )  / 
2 ) ) )
192186, 191mpbid 210 1  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
)  <_  ( (
( ( log `  N
)  +  1 ) ^ 2 )  / 
2 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    C_ wss 3323   (/)c0 3632   class class class wbr 4287   ` cfv 5413  (class class class)co 6086   CCcc 9272   RRcr 9273   0cc0 9274   1c1 9275    + caddc 9277    x. cmul 9279    < clt 9410    <_ cle 9411    - cmin 9587    / cdiv 9985   NNcn 10314   2c2 10363   NN0cn0 10571   ZZcz 10638   ZZ>=cuz 10853   RR+crp 10983   [,]cicc 11295   ...cfz 11429  ..^cfzo 11540   |_cfl 11632   ^cexp 11857   sum_csu 13155   logclog 21981   gammacem 22360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-ioc 11297  df-ico 11298  df-icc 11299  df-fz 11430  df-fzo 11541  df-fl 11634  df-mod 11701  df-seq 11799  df-exp 11858  df-fac 12044  df-bc 12071  df-hash 12096  df-shft 12548  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-limsup 12941  df-clim 12958  df-rlim 12959  df-sum 13156  df-ef 13345  df-e 13346  df-sin 13347  df-cos 13348  df-pi 13350  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-starv 14245  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-hom 14254  df-cco 14255  df-rest 14353  df-topn 14354  df-0g 14372  df-gsum 14373  df-topgen 14374  df-pt 14375  df-prds 14378  df-xrs 14432  df-qtop 14437  df-imas 14438  df-xps 14440  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-submnd 15457  df-mulg 15539  df-cntz 15826  df-cmn 16270  df-psmet 17784  df-xmet 17785  df-met 17786  df-bl 17787  df-mopn 17788  df-fbas 17789  df-fg 17790  df-cnfld 17794  df-top 18478  df-bases 18480  df-topon 18481  df-topsp 18482  df-cld 18598  df-ntr 18599  df-cls 18600  df-nei 18677  df-lp 18715  df-perf 18716  df-cn 18806  df-cnp 18807  df-haus 18894  df-tx 19110  df-hmeo 19303  df-fil 19394  df-fm 19486  df-flim 19487  df-flf 19488  df-xms 19870  df-ms 19871  df-tms 19872  df-cncf 20429  df-limc 21316  df-dv 21317  df-log 21983  df-em 22361
This theorem is referenced by:  pntlemk  22830
  Copyright terms: Public domain W3C validator