MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdivbnd Structured version   Visualization version   Unicode version

Theorem logdivbnd 24473
Description: A bound on a sum of logs, used in pntlemk 24523. This is not as precise as logdivsum 24450 in its asymptotic behavior, but it is valid for all  N and does not require a limit value. (Contributed by Mario Carneiro, 13-Apr-2016.)
Assertion
Ref Expression
logdivbnd  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
)  <_  ( (
( ( log `  N
)  +  1 ) ^ 2 )  / 
2 ) )
Distinct variable group:    n, N

Proof of Theorem logdivbnd
Dummy variables  i  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 10701 . . . 4  |-  2  e.  RR
2 fzfid 12224 . . . . 5  |-  ( N  e.  NN  ->  (
1 ... N )  e. 
Fin )
3 elfzuz 11822 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... N )  ->  n  e.  ( ZZ>= `  1 )
)
43adantl 473 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  n  e.  (
ZZ>= `  1 ) )
5 nnuz 11218 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
64, 5syl6eleqr 2560 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  n  e.  NN )
76nnrpd 11362 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  n  e.  RR+ )
87relogcld 23651 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( log `  n
)  e.  RR )
98, 6nndivred 10680 . . . . 5  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( ( log `  n )  /  n
)  e.  RR )
102, 9fsumrecl 13877 . . . 4  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
)  e.  RR )
11 remulcl 9642 . . . 4  |-  ( ( 2  e.  RR  /\  sum_
n  e.  ( 1 ... N ) ( ( log `  n
)  /  n )  e.  RR )  -> 
( 2  x.  sum_ n  e.  ( 1 ... N ) ( ( log `  n )  /  n ) )  e.  RR )
121, 10, 11sylancr 676 . . 3  |-  ( N  e.  NN  ->  (
2  x.  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
) )  e.  RR )
13 elfznn 11854 . . . . . . 7  |-  ( i  e.  ( 1 ... N )  ->  i  e.  NN )
1413adantl 473 . . . . . 6  |-  ( ( N  e.  NN  /\  i  e.  ( 1 ... N ) )  ->  i  e.  NN )
1514nnrecred 10677 . . . . 5  |-  ( ( N  e.  NN  /\  i  e.  ( 1 ... N ) )  ->  ( 1  / 
i )  e.  RR )
162, 15fsumrecl 13877 . . . 4  |-  ( N  e.  NN  ->  sum_ i  e.  ( 1 ... N
) ( 1  / 
i )  e.  RR )
1716resqcld 12480 . . 3  |-  ( N  e.  NN  ->  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i ) ^ 2 )  e.  RR )
18 nnrp 11334 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  RR+ )
1918relogcld 23651 . . . . 5  |-  ( N  e.  NN  ->  ( log `  N )  e.  RR )
20 peano2re 9824 . . . . 5  |-  ( ( log `  N )  e.  RR  ->  (
( log `  N
)  +  1 )  e.  RR )
2119, 20syl 17 . . . 4  |-  ( N  e.  NN  ->  (
( log `  N
)  +  1 )  e.  RR )
2221resqcld 12480 . . 3  |-  ( N  e.  NN  ->  (
( ( log `  N
)  +  1 ) ^ 2 )  e.  RR )
2310recnd 9687 . . . . 5  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
)  e.  CC )
24232timesd 10878 . . . 4  |-  ( N  e.  NN  ->  (
2  x.  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
) )  =  (
sum_ n  e.  (
1 ... N ) ( ( log `  n
)  /  n )  +  sum_ n  e.  ( 1 ... N ) ( ( log `  n
)  /  n ) ) )
25 fzfid 12224 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( 1 ... n )  e.  Fin )
26 elfznn 11854 . . . . . . . . . . 11  |-  ( i  e.  ( 1 ... n )  ->  i  e.  NN )
2726adantl 473 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  /\  i  e.  ( 1 ... n ) )  ->  i  e.  NN )
2827nnrecred 10677 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  /\  i  e.  ( 1 ... n ) )  ->  ( 1  /  i )  e.  RR )
2925, 28fsumrecl 13877 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  sum_ i  e.  ( 1 ... n ) ( 1  /  i
)  e.  RR )
3029, 6nndivred 10680 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... n
) ( 1  / 
i )  /  n
)  e.  RR )
312, 30fsumrecl 13877 . . . . . 6  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( sum_ i  e.  ( 1 ... n
) ( 1  / 
i )  /  n
)  e.  RR )
32 fzfid 12224 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( 1 ... ( n  -  1 ) )  e.  Fin )
33 elfznn 11854 . . . . . . . . . . 11  |-  ( i  e.  ( 1 ... ( n  -  1 ) )  ->  i  e.  NN )
3433adantl 473 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  /\  i  e.  ( 1 ... ( n  -  1 ) ) )  ->  i  e.  NN )
3534nnrecred 10677 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  /\  i  e.  ( 1 ... ( n  -  1 ) ) )  ->  ( 1  /  i )  e.  RR )
3632, 35fsumrecl 13877 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  e.  RR )
3736, 6nndivred 10680 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  /  n
)  e.  RR )
382, 37fsumrecl 13877 . . . . . 6  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  /  n
)  e.  RR )
396nncnd 10647 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  n  e.  CC )
40 ax-1cn 9615 . . . . . . . . . . . . . . 15  |-  1  e.  CC
41 npcan 9904 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( ( n  - 
1 )  +  1 )  =  n )
4239, 40, 41sylancl 675 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( ( n  -  1 )  +  1 )  =  n )
4342fveq2d 5883 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( log `  (
( n  -  1 )  +  1 ) )  =  ( log `  n ) )
4443oveq2d 6324 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  -  ( log `  ( ( n  -  1 )  +  1 ) ) )  =  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  -  ( log `  n ) ) )
45 nnm1nn0 10935 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
n  -  1 )  e.  NN0 )
46 harmonicbnd3 24012 . . . . . . . . . . . . 13  |-  ( ( n  -  1 )  e.  NN0  ->  ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  -  ( log `  (
( n  -  1 )  +  1 ) ) )  e.  ( 0 [,] gamma )
)
476, 45, 463syl 18 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  -  ( log `  ( ( n  -  1 )  +  1 ) ) )  e.  ( 0 [,]
gamma ) )
4844, 47eqeltrrd 2550 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  -  ( log `  n ) )  e.  ( 0 [,]
gamma ) )
49 0re 9661 . . . . . . . . . . . . 13  |-  0  e.  RR
50 emre 24010 . . . . . . . . . . . . 13  |-  gamma  e.  RR
5149, 50elicc2i 11725 . . . . . . . . . . . 12  |-  ( (
sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  -  ( log `  n ) )  e.  ( 0 [,] gamma )  <-> 
( ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  -  ( log `  n ) )  e.  RR  /\  0  <_  ( sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  -  ( log `  n ) )  /\  ( sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  -  ( log `  n ) )  <_  gamma ) )
5251simp2bi 1046 . . . . . . . . . . 11  |-  ( (
sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  -  ( log `  n ) )  e.  ( 0 [,] gamma )  ->  0  <_  ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  -  ( log `  n
) ) )
5348, 52syl 17 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  0  <_  ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  -  ( log `  n
) ) )
5436, 8subge0d 10224 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( 0  <_ 
( sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  -  ( log `  n ) )  <->  ( log `  n )  <_  sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i ) ) )
5553, 54mpbid 215 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( log `  n
)  <_  sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i ) )
568, 36, 7, 55lediv1dd 11419 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( ( log `  n )  /  n
)  <_  ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  /  n ) )
5727nnrpd 11362 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  /\  i  e.  ( 1 ... n ) )  ->  i  e.  RR+ )
5857rpreccld 11374 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  /\  i  e.  ( 1 ... n ) )  ->  ( 1  /  i )  e.  RR+ )
5958rpge0d 11368 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  /\  i  e.  ( 1 ... n ) )  ->  0  <_  ( 1  /  i ) )
60 elfzelz 11826 . . . . . . . . . . . . . 14  |-  ( n  e.  ( 1 ... N )  ->  n  e.  ZZ )
6160adantl 473 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  n  e.  ZZ )
62 peano2zm 11004 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  (
n  -  1 )  e.  ZZ )
6361, 62syl 17 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( n  - 
1 )  e.  ZZ )
646nnred 10646 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  n  e.  RR )
6564lem1d 10562 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( n  - 
1 )  <_  n
)
66 eluz2 11188 . . . . . . . . . . . 12  |-  ( n  e.  ( ZZ>= `  (
n  -  1 ) )  <->  ( ( n  -  1 )  e.  ZZ  /\  n  e.  ZZ  /\  ( n  -  1 )  <_  n ) )
6763, 61, 65, 66syl3anbrc 1214 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  n  e.  (
ZZ>= `  ( n  - 
1 ) ) )
68 fzss2 11864 . . . . . . . . . . 11  |-  ( n  e.  ( ZZ>= `  (
n  -  1 ) )  ->  ( 1 ... ( n  - 
1 ) )  C_  ( 1 ... n
) )
6967, 68syl 17 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( 1 ... ( n  -  1 ) )  C_  (
1 ... n ) )
7025, 28, 59, 69fsumless 13933 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  <_  sum_ i  e.  ( 1 ... n
) ( 1  / 
i ) )
716nngt0d 10675 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  0  <  n
)
72 lediv1 10492 . . . . . . . . . 10  |-  ( (
sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  e.  RR  /\  sum_ i  e.  ( 1 ... n ) ( 1  /  i )  e.  RR  /\  (
n  e.  RR  /\  0  <  n ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  <_  sum_ i  e.  ( 1 ... n
) ( 1  / 
i )  <->  ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  /  n )  <_ 
( sum_ i  e.  ( 1 ... n ) ( 1  /  i
)  /  n ) ) )
7336, 29, 64, 71, 72syl112anc 1296 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  <_  sum_ i  e.  ( 1 ... n
) ( 1  / 
i )  <->  ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  /  n )  <_ 
( sum_ i  e.  ( 1 ... n ) ( 1  /  i
)  /  n ) ) )
7470, 73mpbid 215 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  /  n
)  <_  ( sum_ i  e.  ( 1 ... n ) ( 1  /  i )  /  n ) )
759, 37, 30, 56, 74letrd 9809 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( ( log `  n )  /  n
)  <_  ( sum_ i  e.  ( 1 ... n ) ( 1  /  i )  /  n ) )
762, 9, 30, 75fsumle 13936 . . . . . 6  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
)  <_  sum_ n  e.  ( 1 ... N
) ( sum_ i  e.  ( 1 ... n
) ( 1  / 
i )  /  n
) )
772, 9, 37, 56fsumle 13936 . . . . . 6  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
)  <_  sum_ n  e.  ( 1 ... N
) ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  /  n
) )
7810, 10, 31, 38, 76, 77le2addd 10253 . . . . 5  |-  ( N  e.  NN  ->  ( sum_ n  e.  ( 1 ... N ) ( ( log `  n
)  /  n )  +  sum_ n  e.  ( 1 ... N ) ( ( log `  n
)  /  n ) )  <_  ( sum_ n  e.  ( 1 ... N ) ( sum_ i  e.  ( 1 ... n ) ( 1  /  i )  /  n )  + 
sum_ n  e.  (
1 ... N ) (
sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  /  n ) ) )
79 oveq1 6315 . . . . . . . . . . 11  |-  ( m  =  n  ->  (
m  -  1 )  =  ( n  - 
1 ) )
8079oveq2d 6324 . . . . . . . . . 10  |-  ( m  =  n  ->  (
1 ... ( m  - 
1 ) )  =  ( 1 ... (
n  -  1 ) ) )
8180sumeq1d 13844 . . . . . . . . 9  |-  ( m  =  n  ->  sum_ i  e.  ( 1 ... (
m  -  1 ) ) ( 1  / 
i )  =  sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i ) )
8281, 81jca 541 . . . . . . . 8  |-  ( m  =  n  ->  ( sum_ i  e.  ( 1 ... ( m  - 
1 ) ) ( 1  /  i )  =  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  /\  sum_ i  e.  ( 1 ... (
m  -  1 ) ) ( 1  / 
i )  =  sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i ) ) )
83 oveq1 6315 . . . . . . . . . . 11  |-  ( m  =  ( n  + 
1 )  ->  (
m  -  1 )  =  ( ( n  +  1 )  - 
1 ) )
8483oveq2d 6324 . . . . . . . . . 10  |-  ( m  =  ( n  + 
1 )  ->  (
1 ... ( m  - 
1 ) )  =  ( 1 ... (
( n  +  1 )  -  1 ) ) )
8584sumeq1d 13844 . . . . . . . . 9  |-  ( m  =  ( n  + 
1 )  ->  sum_ i  e.  ( 1 ... (
m  -  1 ) ) ( 1  / 
i )  =  sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i ) )
8685, 85jca 541 . . . . . . . 8  |-  ( m  =  ( n  + 
1 )  ->  ( sum_ i  e.  ( 1 ... ( m  - 
1 ) ) ( 1  /  i )  =  sum_ i  e.  ( 1 ... ( ( n  +  1 )  -  1 ) ) ( 1  /  i
)  /\  sum_ i  e.  ( 1 ... (
m  -  1 ) ) ( 1  / 
i )  =  sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i ) ) )
87 oveq1 6315 . . . . . . . . . . . . . 14  |-  ( m  =  1  ->  (
m  -  1 )  =  ( 1  -  1 ) )
88 1m1e0 10700 . . . . . . . . . . . . . 14  |-  ( 1  -  1 )  =  0
8987, 88syl6eq 2521 . . . . . . . . . . . . 13  |-  ( m  =  1  ->  (
m  -  1 )  =  0 )
9089oveq2d 6324 . . . . . . . . . . . 12  |-  ( m  =  1  ->  (
1 ... ( m  - 
1 ) )  =  ( 1 ... 0
) )
91 fz10 11846 . . . . . . . . . . . 12  |-  ( 1 ... 0 )  =  (/)
9290, 91syl6eq 2521 . . . . . . . . . . 11  |-  ( m  =  1  ->  (
1 ... ( m  - 
1 ) )  =  (/) )
9392sumeq1d 13844 . . . . . . . . . 10  |-  ( m  =  1  ->  sum_ i  e.  ( 1 ... (
m  -  1 ) ) ( 1  / 
i )  =  sum_ i  e.  (/)  ( 1  /  i ) )
94 sum0 13864 . . . . . . . . . 10  |-  sum_ i  e.  (/)  ( 1  / 
i )  =  0
9593, 94syl6eq 2521 . . . . . . . . 9  |-  ( m  =  1  ->  sum_ i  e.  ( 1 ... (
m  -  1 ) ) ( 1  / 
i )  =  0 )
9695, 95jca 541 . . . . . . . 8  |-  ( m  =  1  ->  ( sum_ i  e.  ( 1 ... ( m  - 
1 ) ) ( 1  /  i )  =  0  /\  sum_ i  e.  ( 1 ... ( m  - 
1 ) ) ( 1  /  i )  =  0 ) )
97 oveq1 6315 . . . . . . . . . . 11  |-  ( m  =  ( N  + 
1 )  ->  (
m  -  1 )  =  ( ( N  +  1 )  - 
1 ) )
9897oveq2d 6324 . . . . . . . . . 10  |-  ( m  =  ( N  + 
1 )  ->  (
1 ... ( m  - 
1 ) )  =  ( 1 ... (
( N  +  1 )  -  1 ) ) )
9998sumeq1d 13844 . . . . . . . . 9  |-  ( m  =  ( N  + 
1 )  ->  sum_ i  e.  ( 1 ... (
m  -  1 ) ) ( 1  / 
i )  =  sum_ i  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) ) ( 1  /  i ) )
10099, 99jca 541 . . . . . . . 8  |-  ( m  =  ( N  + 
1 )  ->  ( sum_ i  e.  ( 1 ... ( m  - 
1 ) ) ( 1  /  i )  =  sum_ i  e.  ( 1 ... ( ( N  +  1 )  -  1 ) ) ( 1  /  i
)  /\  sum_ i  e.  ( 1 ... (
m  -  1 ) ) ( 1  / 
i )  =  sum_ i  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) ) ( 1  /  i ) ) )
101 peano2nn 10643 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
102101, 5syl6eleq 2559 . . . . . . . 8  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  ( ZZ>= `  1
) )
103 fzfid 12224 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  m  e.  ( 1 ... ( N  + 
1 ) ) )  ->  ( 1 ... ( m  -  1 ) )  e.  Fin )
104 elfznn 11854 . . . . . . . . . . . 12  |-  ( i  e.  ( 1 ... ( m  -  1 ) )  ->  i  e.  NN )
105104adantl 473 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  m  e.  ( 1 ... ( N  + 
1 ) ) )  /\  i  e.  ( 1 ... ( m  -  1 ) ) )  ->  i  e.  NN )
106105nnrecred 10677 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  m  e.  ( 1 ... ( N  + 
1 ) ) )  /\  i  e.  ( 1 ... ( m  -  1 ) ) )  ->  ( 1  /  i )  e.  RR )
107103, 106fsumrecl 13877 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  m  e.  ( 1 ... ( N  + 
1 ) ) )  ->  sum_ i  e.  ( 1 ... ( m  -  1 ) ) ( 1  /  i
)  e.  RR )
108107recnd 9687 . . . . . . . 8  |-  ( ( N  e.  NN  /\  m  e.  ( 1 ... ( N  + 
1 ) ) )  ->  sum_ i  e.  ( 1 ... ( m  -  1 ) ) ( 1  /  i
)  e.  CC )
10982, 86, 96, 100, 102, 108, 108fsumparts 13943 . . . . . . 7  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1..^ ( N  +  1 ) ) ( sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  x.  ( sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i )  -  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
) ) )  =  ( ( ( sum_ i  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) ) ( 1  /  i )  x.  sum_ i  e.  ( 1 ... ( ( N  +  1 )  -  1 ) ) ( 1  /  i
) )  -  (
0  x.  0 ) )  -  sum_ n  e.  ( 1..^ ( N  +  1 ) ) ( ( sum_ i  e.  ( 1 ... (
( n  +  1 )  -  1 ) ) ( 1  / 
i )  -  sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i ) )  x.  sum_ i  e.  ( 1 ... (
( n  +  1 )  -  1 ) ) ( 1  / 
i ) ) ) )
110 nnz 10983 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  ZZ )
111 fzval3 12012 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
1 ... N )  =  ( 1..^ ( N  +  1 ) ) )
112110, 111syl 17 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
1 ... N )  =  ( 1..^ ( N  +  1 ) ) )
113112eqcomd 2477 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1..^ ( N  + 
1 ) )  =  ( 1 ... N
) )
114 pncan 9901 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( ( n  + 
1 )  -  1 )  =  n )
11539, 40, 114sylancl 675 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( ( n  +  1 )  - 
1 )  =  n )
116115oveq2d 6324 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( 1 ... ( ( n  + 
1 )  -  1 ) )  =  ( 1 ... n ) )
117116sumeq1d 13844 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  sum_ i  e.  ( 1 ... ( ( n  +  1 )  -  1 ) ) ( 1  /  i
)  =  sum_ i  e.  ( 1 ... n
) ( 1  / 
i ) )
11828recnd 9687 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  /\  i  e.  ( 1 ... n ) )  ->  ( 1  /  i )  e.  CC )
119 oveq2 6316 . . . . . . . . . . . . . 14  |-  ( i  =  n  ->  (
1  /  i )  =  ( 1  /  n ) )
1204, 118, 119fsumm1 13889 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  sum_ i  e.  ( 1 ... n ) ( 1  /  i
)  =  ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  +  ( 1  /  n ) ) )
121117, 120eqtrd 2505 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  sum_ i  e.  ( 1 ... ( ( n  +  1 )  -  1 ) ) ( 1  /  i
)  =  ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  +  ( 1  /  n ) ) )
122121oveq1d 6323 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
( n  +  1 )  -  1 ) ) ( 1  / 
i )  -  sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i ) )  =  ( (
sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  +  ( 1  /  n ) )  -  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
) ) )
12336recnd 9687 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  e.  CC )
1246nnrecred 10677 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( 1  /  n )  e.  RR )
125124recnd 9687 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( 1  /  n )  e.  CC )
126123, 125pncan2d 10007 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  +  ( 1  /  n ) )  -  sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i ) )  =  ( 1  /  n ) )
127122, 126eqtrd 2505 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
( n  +  1 )  -  1 ) ) ( 1  / 
i )  -  sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i ) )  =  ( 1  /  n ) )
128127oveq2d 6324 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  x.  ( sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i )  -  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
) ) )  =  ( sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  x.  ( 1  /  n ) ) )
1296nnne0d 10676 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  n  =/=  0
)
130123, 39, 129divrecd 10408 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  /  n
)  =  ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  x.  ( 1  /  n ) ) )
131128, 130eqtr4d 2508 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  x.  ( sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i )  -  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
) ) )  =  ( sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  /  n ) )
132113, 131sumeq12rdv 13850 . . . . . . 7  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1..^ ( N  +  1 ) ) ( sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  x.  ( sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i )  -  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
) ) )  = 
sum_ n  e.  (
1 ... N ) (
sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  /  n ) )
133 nncn 10639 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  N  e.  CC )
134 pncan 9901 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
135133, 40, 134sylancl 675 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( N  +  1 )  -  1 )  =  N )
136135oveq2d 6324 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
1 ... ( ( N  +  1 )  - 
1 ) )  =  ( 1 ... N
) )
137136sumeq1d 13844 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  sum_ i  e.  ( 1 ... (
( N  +  1 )  -  1 ) ) ( 1  / 
i )  =  sum_ i  e.  ( 1 ... N ) ( 1  /  i ) )
138137, 137oveq12d 6326 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( sum_ i  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) ) ( 1  /  i )  x.  sum_ i  e.  ( 1 ... ( ( N  +  1 )  -  1 ) ) ( 1  /  i
) )  =  (
sum_ i  e.  ( 1 ... N ) ( 1  /  i
)  x.  sum_ i  e.  ( 1 ... N
) ( 1  / 
i ) ) )
13916recnd 9687 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  sum_ i  e.  ( 1 ... N
) ( 1  / 
i )  e.  CC )
140139sqvald 12451 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i ) ^ 2 )  =  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i
)  x.  sum_ i  e.  ( 1 ... N
) ( 1  / 
i ) ) )
141138, 140eqtr4d 2508 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( sum_ i  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) ) ( 1  /  i )  x.  sum_ i  e.  ( 1 ... ( ( N  +  1 )  -  1 ) ) ( 1  /  i
) )  =  (
sum_ i  e.  ( 1 ... N ) ( 1  /  i
) ^ 2 ) )
142 0cn 9653 . . . . . . . . . . . 12  |-  0  e.  CC
143142mul01i 9841 . . . . . . . . . . 11  |-  ( 0  x.  0 )  =  0
144143a1i 11 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
0  x.  0 )  =  0 )
145141, 144oveq12d 6326 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( sum_ i  e.  ( 1 ... ( ( N  +  1 )  -  1 ) ) ( 1  /  i
)  x.  sum_ i  e.  ( 1 ... (
( N  +  1 )  -  1 ) ) ( 1  / 
i ) )  -  ( 0  x.  0 ) )  =  ( ( sum_ i  e.  ( 1 ... N ) ( 1  /  i
) ^ 2 )  -  0 ) )
146139sqcld 12452 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i ) ^ 2 )  e.  CC )
147146subid1d 9994 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( sum_ i  e.  ( 1 ... N ) ( 1  /  i
) ^ 2 )  -  0 )  =  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i
) ^ 2 ) )
148145, 147eqtrd 2505 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( sum_ i  e.  ( 1 ... ( ( N  +  1 )  -  1 ) ) ( 1  /  i
)  x.  sum_ i  e.  ( 1 ... (
( N  +  1 )  -  1 ) ) ( 1  / 
i ) )  -  ( 0  x.  0 ) )  =  (
sum_ i  e.  ( 1 ... N ) ( 1  /  i
) ^ 2 ) )
149127, 117oveq12d 6326 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( ( sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i )  -  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
) )  x.  sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i ) )  =  ( ( 1  /  n )  x.  sum_ i  e.  ( 1 ... n ) ( 1  /  i
) ) )
15029recnd 9687 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  sum_ i  e.  ( 1 ... n ) ( 1  /  i
)  e.  CC )
151150, 39, 129divrec2d 10409 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( sum_ i  e.  ( 1 ... n
) ( 1  / 
i )  /  n
)  =  ( ( 1  /  n )  x.  sum_ i  e.  ( 1 ... n ) ( 1  /  i
) ) )
152149, 151eqtr4d 2508 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... N ) )  ->  ( ( sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i )  -  sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
) )  x.  sum_ i  e.  ( 1 ... ( ( n  +  1 )  - 
1 ) ) ( 1  /  i ) )  =  ( sum_ i  e.  ( 1 ... n ) ( 1  /  i )  /  n ) )
153113, 152sumeq12rdv 13850 . . . . . . . 8  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1..^ ( N  +  1 ) ) ( ( sum_ i  e.  ( 1 ... (
( n  +  1 )  -  1 ) ) ( 1  / 
i )  -  sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i ) )  x.  sum_ i  e.  ( 1 ... (
( n  +  1 )  -  1 ) ) ( 1  / 
i ) )  = 
sum_ n  e.  (
1 ... N ) (
sum_ i  e.  ( 1 ... n ) ( 1  /  i
)  /  n ) )
154148, 153oveq12d 6326 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( sum_ i  e.  ( 1 ... (
( N  +  1 )  -  1 ) ) ( 1  / 
i )  x.  sum_ i  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) ) ( 1  /  i ) )  -  ( 0  x.  0 ) )  -  sum_ n  e.  ( 1..^ ( N  + 
1 ) ) ( ( sum_ i  e.  ( 1 ... ( ( n  +  1 )  -  1 ) ) ( 1  /  i
)  -  sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i ) )  x. 
sum_ i  e.  ( 1 ... ( ( n  +  1 )  -  1 ) ) ( 1  /  i
) ) )  =  ( ( sum_ i  e.  ( 1 ... N
) ( 1  / 
i ) ^ 2 )  -  sum_ n  e.  ( 1 ... N
) ( sum_ i  e.  ( 1 ... n
) ( 1  / 
i )  /  n
) ) )
155109, 132, 1543eqtr3rd 2514 . . . . . 6  |-  ( N  e.  NN  ->  (
( sum_ i  e.  ( 1 ... N ) ( 1  /  i
) ^ 2 )  -  sum_ n  e.  ( 1 ... N ) ( sum_ i  e.  ( 1 ... n ) ( 1  /  i
)  /  n ) )  =  sum_ n  e.  ( 1 ... N
) ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  /  n
) )
15631recnd 9687 . . . . . . 7  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( sum_ i  e.  ( 1 ... n
) ( 1  / 
i )  /  n
)  e.  CC )
15738recnd 9687 . . . . . . 7  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( sum_ i  e.  ( 1 ... (
n  -  1 ) ) ( 1  / 
i )  /  n
)  e.  CC )
158146, 156, 157subaddd 10023 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( sum_ i  e.  ( 1 ... N
) ( 1  / 
i ) ^ 2 )  -  sum_ n  e.  ( 1 ... N
) ( sum_ i  e.  ( 1 ... n
) ( 1  / 
i )  /  n
) )  =  sum_ n  e.  ( 1 ... N ) ( sum_ i  e.  ( 1 ... ( n  - 
1 ) ) ( 1  /  i )  /  n )  <->  ( sum_ n  e.  ( 1 ... N ) ( sum_ i  e.  ( 1 ... n ) ( 1  /  i )  /  n )  + 
sum_ n  e.  (
1 ... N ) (
sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  /  n ) )  =  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i ) ^ 2 ) ) )
159155, 158mpbid 215 . . . . 5  |-  ( N  e.  NN  ->  ( sum_ n  e.  ( 1 ... N ) (
sum_ i  e.  ( 1 ... n ) ( 1  /  i
)  /  n )  +  sum_ n  e.  ( 1 ... N ) ( sum_ i  e.  ( 1 ... ( n  -  1 ) ) ( 1  /  i
)  /  n ) )  =  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i ) ^ 2 ) )
16078, 159breqtrd 4420 . . . 4  |-  ( N  e.  NN  ->  ( sum_ n  e.  ( 1 ... N ) ( ( log `  n
)  /  n )  +  sum_ n  e.  ( 1 ... N ) ( ( log `  n
)  /  n ) )  <_  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i ) ^ 2 ) )
16124, 160eqbrtrd 4416 . . 3  |-  ( N  e.  NN  ->  (
2  x.  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
) )  <_  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i ) ^ 2 ) )
162 flid 12077 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( |_ `  N )  =  N )
163110, 162syl 17 . . . . . . 7  |-  ( N  e.  NN  ->  ( |_ `  N )  =  N )
164163oveq2d 6324 . . . . . 6  |-  ( N  e.  NN  ->  (
1 ... ( |_ `  N ) )  =  ( 1 ... N
) )
165164sumeq1d 13844 . . . . 5  |-  ( N  e.  NN  ->  sum_ i  e.  ( 1 ... ( |_ `  N ) ) ( 1  /  i
)  =  sum_ i  e.  ( 1 ... N
) ( 1  / 
i ) )
166 nnre 10638 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  RR )
167 nnge1 10657 . . . . . 6  |-  ( N  e.  NN  ->  1  <_  N )
168 harmonicubnd 24014 . . . . . 6  |-  ( ( N  e.  RR  /\  1  <_  N )  ->  sum_ i  e.  ( 1 ... ( |_ `  N ) ) ( 1  /  i )  <_  ( ( log `  N )  +  1 ) )
169166, 167, 168syl2anc 673 . . . . 5  |-  ( N  e.  NN  ->  sum_ i  e.  ( 1 ... ( |_ `  N ) ) ( 1  /  i
)  <_  ( ( log `  N )  +  1 ) )
170165, 169eqbrtrrd 4418 . . . 4  |-  ( N  e.  NN  ->  sum_ i  e.  ( 1 ... N
) ( 1  / 
i )  <_  (
( log `  N
)  +  1 ) )
17114nnrpd 11362 . . . . . . . 8  |-  ( ( N  e.  NN  /\  i  e.  ( 1 ... N ) )  ->  i  e.  RR+ )
172171rpreccld 11374 . . . . . . 7  |-  ( ( N  e.  NN  /\  i  e.  ( 1 ... N ) )  ->  ( 1  / 
i )  e.  RR+ )
173172rpge0d 11368 . . . . . 6  |-  ( ( N  e.  NN  /\  i  e.  ( 1 ... N ) )  ->  0  <_  (
1  /  i ) )
1742, 15, 173fsumge0 13932 . . . . 5  |-  ( N  e.  NN  ->  0  <_ 
sum_ i  e.  ( 1 ... N ) ( 1  /  i
) )
17549a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  0  e.  RR )
176 log1 23614 . . . . . . 7  |-  ( log `  1 )  =  0
177 1rp 11329 . . . . . . . . 9  |-  1  e.  RR+
178 logleb 23631 . . . . . . . . 9  |-  ( ( 1  e.  RR+  /\  N  e.  RR+ )  ->  (
1  <_  N  <->  ( log `  1 )  <_  ( log `  N ) ) )
179177, 18, 178sylancr 676 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1  <_  N  <->  ( log `  1 )  <_  ( log `  N ) ) )
180167, 179mpbid 215 . . . . . . 7  |-  ( N  e.  NN  ->  ( log `  1 )  <_ 
( log `  N
) )
181176, 180syl5eqbrr 4430 . . . . . 6  |-  ( N  e.  NN  ->  0  <_  ( log `  N
) )
18219lep1d 10560 . . . . . 6  |-  ( N  e.  NN  ->  ( log `  N )  <_ 
( ( log `  N
)  +  1 ) )
183175, 19, 21, 181, 182letrd 9809 . . . . 5  |-  ( N  e.  NN  ->  0  <_  ( ( log `  N
)  +  1 ) )
18416, 21, 174, 183le2sqd 12489 . . . 4  |-  ( N  e.  NN  ->  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i )  <_  ( ( log `  N )  +  1 )  <->  ( sum_ i  e.  ( 1 ... N
) ( 1  / 
i ) ^ 2 )  <_  ( (
( log `  N
)  +  1 ) ^ 2 ) ) )
185170, 184mpbid 215 . . 3  |-  ( N  e.  NN  ->  ( sum_ i  e.  ( 1 ... N ) ( 1  /  i ) ^ 2 )  <_ 
( ( ( log `  N )  +  1 ) ^ 2 ) )
18612, 17, 22, 161, 185letrd 9809 . 2  |-  ( N  e.  NN  ->  (
2  x.  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
) )  <_  (
( ( log `  N
)  +  1 ) ^ 2 ) )
1871a1i 11 . . 3  |-  ( N  e.  NN  ->  2  e.  RR )
188 2pos 10723 . . . 4  |-  0  <  2
189188a1i 11 . . 3  |-  ( N  e.  NN  ->  0  <  2 )
190 lemuldiv2 10509 . . 3  |-  ( (
sum_ n  e.  (
1 ... N ) ( ( log `  n
)  /  n )  e.  RR  /\  (
( ( log `  N
)  +  1 ) ^ 2 )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
( ( 2  x. 
sum_ n  e.  (
1 ... N ) ( ( log `  n
)  /  n ) )  <_  ( (
( log `  N
)  +  1 ) ^ 2 )  <->  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
)  <_  ( (
( ( log `  N
)  +  1 ) ^ 2 )  / 
2 ) ) )
19110, 22, 187, 189, 190syl112anc 1296 . 2  |-  ( N  e.  NN  ->  (
( 2  x.  sum_ n  e.  ( 1 ... N ) ( ( log `  n )  /  n ) )  <_  ( ( ( log `  N )  +  1 ) ^
2 )  <->  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
)  <_  ( (
( ( log `  N
)  +  1 ) ^ 2 )  / 
2 ) ) )
192186, 191mpbid 215 1  |-  ( N  e.  NN  ->  sum_ n  e.  ( 1 ... N
) ( ( log `  n )  /  n
)  <_  ( (
( ( log `  N
)  +  1 ) ^ 2 )  / 
2 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904    C_ wss 3390   (/)c0 3722   class class class wbr 4395   ` cfv 5589  (class class class)co 6308   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562    < clt 9693    <_ cle 9694    - cmin 9880    / cdiv 10291   NNcn 10631   2c2 10681   NN0cn0 10893   ZZcz 10961   ZZ>=cuz 11182   RR+crp 11325   [,]cicc 11663   ...cfz 11810  ..^cfzo 11942   |_cfl 12059   ^cexp 12310   sum_csu 13829   logclog 23583   gammacem 23996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-ioc 11665  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-fac 12498  df-bc 12526  df-hash 12554  df-shft 13207  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-limsup 13603  df-clim 13629  df-rlim 13630  df-sum 13830  df-ef 14198  df-e 14199  df-sin 14200  df-cos 14201  df-pi 14203  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-fbas 19044  df-fg 19045  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cld 20111  df-ntr 20112  df-cls 20113  df-nei 20191  df-lp 20229  df-perf 20230  df-cn 20320  df-cnp 20321  df-haus 20408  df-tx 20654  df-hmeo 20847  df-fil 20939  df-fm 21031  df-flim 21032  df-flf 21033  df-xms 21413  df-ms 21414  df-tms 21415  df-cncf 21988  df-limc 22900  df-dv 22901  df-log 23585  df-em 23997
This theorem is referenced by:  pntlemk  24523
  Copyright terms: Public domain W3C validator